Effectiveness and Durability of Polyacrylamide (PAM) and Polysaccharide (Jag C 162) in Reducing Soil Erosion under Simulated Rainfalls

Abstract

Polymers as a soil amendment is one of the effective measurements to reduce soil erosion. In this study, two polymers, polyacrylamide (PAM) and polysaccharide (Jag C 162), were applied to erosion plots filled with loess soil (tilted at 20°). For each polymer, four concentration levels—0, 10, 30, and 50 kg·ha−1—were applied. The treated erosion plots were then subjected to two simulated rainfall events (dry and wet run) to investigate their effectiveness and durability in controlling soil erosion. Both simulated rainfall events were at an intensity of 120 mm·h−1, and each event lasted for 30 min with 24 h free drainage in between. Results show that both polymers could reduce runoff, effectively control sheet erosion, and promote soil aggregates due to their capability to bind and stabilize soil particles. Such reducing effects were more pronounced on the Jag C 162-treated plots than on the PAM-treated plots. However, during the second (wet) run, there was more reduction of aggregate with size of >0.25 mm and greater increment of soil loss on the Jag C 162-treated plots than on the PAM-treated plots

    Similar works