Carbon fiber laminates and sandwich structures are widely used due to their extraordinary mechanical performance (high specific strength, specific modulus, resistance to corrosion and resistance to fatigue), in the case of sandwiches, the high performance of the carbon laminates can be increased by the low density of the core. Besides that, carbon fiber is a conductive material, beyond its mechanical advantages, it has the potential to be used as a self-sensing material.
This work aimed to analyze the use of sandwich composite structures in aircraft, to manufacture, and to study the mechanical and electrical properties of a sandwich composed of two carbon fiber faces and a structural foam core.
The experimental work started with a study on the foam core, to access the impact of the adhesive curing temperature in the foam’s mechanical behavior. There was an increase on the ductility of the foam, but the flexural strength did not suffer significant changes.
Posteriorly, three-point bending tests were carried out on carbon fiber laminates, with two different geometries, so compressive and tensile failures could be studied. The specimens that failed to compression showed a flexural strength of 1066.21±4.7% MPa, while the ones that failed under a flexural stress of 1238.49±7% MPa.
The sandwich specimens with different adhesive bonds and geometries were tested and the short samples with reinforced bond failed to compression under a flexural stress of 100 MPa ± 5%, while the long samples showed several failure modes under a flexural stress of 86 MPa ± 7%.
An electromechanical analysis was conducted to study the piezoresistive response of the sandwich skins. From this analysis was possible to show that there is indeed a relation between the electrical resistance and the applied strain.Os laminados de fibra de carbono e as estruturas em sanduíche são amplamente utilizadas devido ao seu elevado desempenho mecânico (elevada resistência específica, módulo específico, resistência à corrosão e resistência à fadiga), que no caso das sanduíches, é acrescido da baixa densidade do núcleo. Além disso, a fibra de carbono é um material condutor, portanto para além das vantagens mecânicas, este material tem o potencial de ser utilizado como um material capaz de detetar dano e deformação sem que a necessidade de sensores.
Neste trabalho pretendeu-se analisar o uso de estruturas compósitas em sanduíches em aeronaves, fabricar e estudar as propriedades mecânicas e elétricas de uma sanduíche composta por duas faces de fibra de carbono e um núcleo de espuma estrutural.
Na primeira fase do trabalho experimental, foi feito um estudo sobre o núcleo de espuma, com o objetivo de averiguar qual o impacto da temperatura de cura do adesivo. Houve um aumento da ductilidade do material, mas sem impactos significativos ao nível da tensão de cedência.
Posteriormente, foram testados à flexão laminados de fibra de carbono, com duas geometrias de forma a serem obtidos modos de falha à compressão e à tração. Verificou-se que os laminados apresentaram um modo de dano nas fibras à compressão, para uma tensão na ordem dos 1066 MPa ± 5%, enquanto que os laminados cuja ruína ocorreu na face à tração a uma tensão na ordem dos 1238 MPa ± 7%.
As amostras de sanduíches com diferentes composições adesivas e geometrias foram testadas e as de menor dimensão com reforço adesivo cederam à compressão com uma tensão máxima na ordem de 100 MPa ± 5%, enquanto que as de maior dimensão apresentaram diversos modos de falha a uma tensão na ordem dos 86 MPa ± 7%.
Recorrendo a uma análise eletromecânica, foi estudada a resposta piezoresistiva dos laminados constituintes das faces das sanduíches. Desta análise foi possível demonstrar que existe efetivamente uma relação entre a resistência elétrica e a deformação do material