Kinematic analysis of an en echelon--continuous vein complex

Abstract

An array of sigmoidal tension gashes from the Idaho--Wyoming thrust belt changes laterally into a continuous vein. Detailed mechanical twin analysis was used to determine the strain variation in the optically and chemically homogeneous blocky calcite filling. In the continuous portion of the vein complex, the shortening axes are parallel to the vein boundary. However, the orientation of the shortening axes in the tip areas of the sigmoidal gashes are at an angle of approximately 35[deg] to the vein boundary, and are parallel to the trend of the tips. Twinning patterns in the central portions of the gashes record two principal strain axes of shortening of nearly equal magnitude with the maximum perpendicular to the vein trend. Everywhere in the vein complex the orientation of the maximum extension axis is parallel to the twist axis of the gashes. The petrofabric strain results show that the vein filling has largely recorded local strains. The pattern of variation in orientation of the principal strains in the vein complex is in close agreement with the theoretically determined stress distribution in similar structures. Our results show that the sigmoidal gashes were formed at the leading edge of a propagating vein and that the sigmoidal shape reflects changes in the local strain field rather than a remote shear. The orientation of these local strains closely corresponds to the orientation of the local stresses.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27567/1/0000611.pd

    Similar works