Salinity is considered as the most important abiotic stress limiting crop production and plants are known to be able continuing survive under this stress by involving many mechanisms. In this content, the present study was carried out to evaluate the impact of NaCl on some physiological and biochemical parameters in five Tunisian chili pepper (Capsicum frutescens L.) cultivars: Tebourba (Tb), Somaa (Sm), Korba (Kb), Awald Haffouzz (AW) and Souk jedid (Sj). Thus, an experiment of five months was carried out under greenhouse at Higher Institute of Agronomy, Chott Meriem, Tunisia and stress is induced by NaCl at 7 concentrations (0, 2, 4, 6, 8, 10 and 12g/l). Results showed that increasing salinity stress, for all cultivars, had a negative impact on roots (length, fresh and dry weights) and leaves (number and area). Also, chlorophyll (a and b) amount in addition to quantium yield (Fv/Fm) decreased significantly. However, biosynthesis of proline in leaves is activated. Awlad Haffouzz and Korba cultivars succefully tolerated highest salinity level by accumulating more proline in leaves and maintaining usually higher values in all parameters in opposition to Souk jedid cultivar. Taken together, our data partly explain the mechanism used to ovoid salt stress by pepper plants when excessive in the culture medium