Optimisations in continuous casting of Cu based alloys by numerical simulation

Abstract

Experimental study and numerical model for the thermo-mechanical properties in continuous casting (CC) of Cu-Al alloys is presented. This is a prerequisite basis for further development of Cu based shape memory alloys (SMA) with various alloying elements (like Ni or Mn). A coupled thermo-mechanical numerical simulation of the CC process is implemented and applied to the full non-equilibrium process conditions. In the experimental part, we used simple yet effective vertical continuous casting system. For the quantitative comparison, we implemented a special temperature measurement system within a graphite crystalliser that enables us to monitor the temperature profile at several spots around the solidification front in real time. The present analysis of the various process parameters’ effect on the solidification process includes: casting speed, thermal contact conductivity, liquid metal temperature, and cooling system set up. For microstructural examination we prepared samples from rods that were subsequently investigated by optical microscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDXS) analysis. Comparisons of the experimental results and numerical simulation were carried out. We developed a comprehensive numerical simulation model that quantitatively describes non-equilibrium time- dependent temperature profile, solid fraction and microstructure features in as cast state. Results from the coupled thermo-mechanical and microstructural simulations compare favourably with experimental data suggesting the casting speed as a key parameter in process optimisation

    Similar works