Quantum adiabatic transfer is widely used in quantum computation and quantum
simulation. However, the transfer speed is limited by the quantum adiabatic
approximation condition, which hinders its application in quantum systems with
a short decoherence time. Here we demonstrate quantum adiabatic state transfers
that jump along geodesics in one-qubit and two-qubit superconducting transmons.
This approach possesses the advantages of speed, robustness, and high fidelity
compared with the usual adiabatic process. Our protocol provides feasible
strategies for improving state manipulation and gate operation in
superconducting quantum circuits