Accelerated quantum adiabatic transfer in superconducting qubits

Abstract

Quantum adiabatic transfer is widely used in quantum computation and quantum simulation. However, the transfer speed is limited by the quantum adiabatic approximation condition, which hinders its application in quantum systems with a short decoherence time. Here we demonstrate quantum adiabatic state transfers that jump along geodesics in one-qubit and two-qubit superconducting transmons. This approach possesses the advantages of speed, robustness, and high fidelity compared with the usual adiabatic process. Our protocol provides feasible strategies for improving state manipulation and gate operation in superconducting quantum circuits

    Similar works

    Full text

    thumbnail-image

    Available Versions