Analysis of Growing Tumor on the Flow Velocity of Cerebrospinal Fluid in Human Brain Using Computational Modeling and Fluid-Structure Interaction

Abstract

Cerebrospinal fluid (CSF) plays a pivotal role in normal functioning of Brain. Intracranial compartments such as blood, brain and CSF are incompressible in nature. Therefore, if a volume imbalance in one of the aforenoted compartments is observed, the other reaches out to maintain net change to zero. Whereas, CSF has higher compliance over long term. However, if the CSF flow is obstructed in the ventricles, this compliance may get exhausted early. Brain tumor on the other hand poses a similar challenge towards destabilization of CSF flow by compressing any section of ventricles thereby ensuing obstruction. To avoid invasive procedures to study effects of tumor on CSF flow, numerical-based methods such as Finite element modeling (FEM) are used which provide excellent description of underlying pathological interaction. A 3D fluid-structure interaction (FSI) model is developed to study the effect of tumor growth on the flow of cerebrospinal fluid in ventricle system. The FSI model encapsulates all the physiological parameters which may be necessary in analyzing intraventricular CSF flow behavior. Findings of the model show that brain tumor affects CSF flow parameters by deforming the walls of ventricles in this case accompanied by a mean rise of 74.23% in CSF flow velocity and considerable deformation on the walls of ventricles

    Similar works