Advanced membrane design for improved carbon dioxide capture.

Abstract

A nano-structure tubular hybrid inorganic membrane capable of stripping carbon dioxide from flue gas stream was designed and tested at laboratory scale to improve compliance to various environmental regulations to cushion the effect of global warming. Single gas separation experiments using silica modified ceramic membrane was carried out to investigate individual gas permeation behaviors at different pressures and membrane eficiency after a dip coating method. Four gases; Nitrogen (N2), Carbon dioxide (CO2), Oxygen (O2) and Methane (CH4) were used. Plots of flowrate versus pressure were generated. Results show that the gas flow rate increases with pressure drop. However at above a pressure of 4bar, the flow rate of CO2 was much higher than the other gases, indicating dominance of a more selective adsorptive type transport mechanism

    Similar works