Tailoring accidental double bound states in the continuum in all-dielectric metasurfaces

Abstract

Bound states in the continuum (BICs) have been thoroughly investigated due to their formally divergent Q-factor, especially those emerging in all-dielectric, nanostructured metasurfaces from symmetry protection at the Γ\Gamma point (in-plane wavevector k=0k_{||}=0). Less attention has been paid to accidental BICs that may appear at any other k0k_{||}\not =0 in the band structure of supported modes, being in turn difficult to predict. Here we make use of a coupled electric/magnetic dipole model to determine analytical conditions for the emergence of accidental BICs, valid for any planar array of meta-atoms that can be described by dipolar resonances, which is the case of many nanostructures in the optical domain. This is explored for all-dielectric nanospheres through explicit analytical conditions that allow us in turn to predict accidental BIC positions in the parameter space (ω,k(\omega,\bf{k_{||}}). Finally, such conditions are exploited to determine not only single, but also double (for both linear polarizations) accidental BICs occurring at the same position in the dispersion relation ωk\omega-\bf{k_{||}} for realistic semiconductor nanodisk meta-atoms. This might pave the way to a variety of BIC-enhanced light-matter interaction phenomena at the nanoscale such as lasing or non-linear conversion, that benefit from emerging at wavevectors away from the Γ\Gamma point (off-normal incidence) overlapping for both linear polarizations.Comment: 18 pages, 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions