Sensing dot with high output swing for scalable baseband readout of spin qubits

Abstract

A key requirement for quantum computing, in particular for a scalable quantum computing architecture, is a fast and high-fidelity qubit readout. For semiconductor based qubits, one limiting factor is the output swing of the charge sensor. We demonstrate GaAs and Si/SiGe asymmetric sensing dots (ASDs), which exceed the response of a conventional charge sensing dot by more than ten times, resulting in a boosted output swing of 3mV3\,\text{mV}. This substantially improved output signal is due to a device design with a strongly decoupled drain reservoir from the sensor dot, mitigating negative feedback effects of conventional sensors. The large output signal eases the use of very low-power readout amplifiers in close proximity to the qubit and will thus render true scalable qubit architectures with semiconductor based qubits possible in the future.Comment: 8 pages, 7 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions