Sampling from Potts on Random Graphs of Unbounded Degree via Random-Cluster Dynamics

Abstract

We consider the problem of sampling from the ferromagnetic Potts and random-cluster models on a general family of random graphs via the Glauber dynamics for the random-cluster model. The random-cluster model is parametrized by an edge probability p(0,1)p \in (0,1) and a cluster weight q>0q > 0. We establish that for every q1q\ge 1, the random-cluster Glauber dynamics mixes in optimal Θ(nlogn)\Theta(n\log n) steps on nn-vertex random graphs having a prescribed degree sequence with bounded average branching γ\gamma throughout the full high-temperature uniqueness regime p<pu(q,γ)p<p_u(q,\gamma). The family of random graph models we consider include the Erd\H{o}s--R\'enyi random graph G(n,γ/n)G(n,\gamma/n), and so we provide the first polynomial-time sampling algorithm for the ferromagnetic Potts model on the Erd\H{o}s--R\'enyi random graphs that works for all qq in the full uniqueness regime. We accompany our results with mixing time lower bounds (exponential in the maximum degree) for the Potts Glauber dynamics, in the same settings where our Θ(nlogn)\Theta(n \log n) bounds for the random-cluster Glauber dynamics apply. This reveals a significant computational advantage of random-cluster based algorithms for sampling from the Potts Gibbs distribution at high temperatures in the presence of high-degree vertices.Comment: 45 pages, 3 figure

    Similar works