A new theorem on quadratic residues modulo primes

Abstract

Let p>3p>3 be a prime, and let (p)(\frac{\cdot}p) be the Legendre symbol. Let bZb\in\mathbb Z and ε{±1}\varepsilon\in\{\pm 1\}. We mainly prove that {Np(a,b): 1<a<p and (ap)=ε}=3(1p)2,\left|\left\{N_p(a,b):\ 1<a<p\ \text{and}\ \left(\frac ap\right)=\varepsilon\right\}\right|=\frac{3-(\frac{-1}p)}2, where Np(a,b)N_p(a,b) is the number of positive integers x{ax2+b}px\{ax^2+b\}_p, and {m}p\{m\}_p with mZm\in\mathbb{Z} is the least nonnegative residue of mm modulo pp.Comment: 6 pages. Accepted by C. R. Math. Acad, Sci. Pari

    Similar works