The space of non-extendable quasimorphisms

Abstract

For a pair (G,N)(G,N) of a group GG and its normal subgroup NN, we consider the space of quasimorphisms and quasi-cocycles on NN non-extendable to GG. To treat this space, we establish the five-term exact sequence of cohomology relative to the bounded subcomplex. As its application, we study the spaces associated with the kernel of the (volume) flux homomorphism, the IA-automorphism group of a free group, and certain normal subgroups of Gromov hyperbolic groups. Furthermore, we employ this space to prove that the stable commutator length is equivalent to the stable mixed commutator length for certain pairs of a group and its normal subgroup.Comment: 58 pages, 1 figure. Major revision. Theorem 1.12 in v3 has been generalized to Theorem 1.2 in the current version: this new theorem treats hyperbolic mapping tori in general cases, and it serves as a leading application of our main theore

    Similar works

    Full text

    thumbnail-image

    Available Versions