Digital Control of a Continuous Stirred Tank Reactor

Abstract

We project a novel digital control law for continuous stirred tank reactors, based on sampled measures of temperatures and reactant concentration, as it happens in practice. The methodology of relative degree preservation under sampling is used. It is proved that a suitably approximated sampled system, obtained by Taylor series expansion and truncation, in closed loop with the projected control law, is asymptotically stable, provided that a condition on the sampling period is verified. Such condition allows for values of the sampling period larger than necessary in practical implementation with usual technology. Many simulations show the high performance of the proposed digital control law

    Similar works