research

DYEING OF KNITTED MICRO-VISCOSE IN THE PRESENCE OF ULTRASOUND WITH DIFFERENT FREQUENCIES

Abstract

In dyeing process, the object is to transport or diffuse dyes and chemicals into the fibre. Various novel processes, including ultrasound, are being introduced and studied as more environmentally friendly alternatives. Encouraging results have been reported for the use of ultrasound energy in dyeing processes of micro-viscose. The recent studies revealed major ultrasound applications advances: savings of processing time, energy, chemicals, as well as environmental protection. Influence of various ultrasound frequencies (40, 200 and 400 kHz) on dyeing of micro-viscose knitted fabrics, by a reactive dye has been reported in this work. A method of reflection spectrophotometry has been employed to record reemission curves of the colored compounds. A software packet has been employed to calculate CIELab colored coordinates. Then, a comparison has been made with samples colored by conventional procedure according to CIELab76 and CMC (2:1) criteria. The use ultrasound in textile dyeing processing offers many potential advantages. The results prove better dye exhaustion by ultrasound and consequently the better fixing. The exhaustion for the bifunctional dye (containing two vinylsulphone groups) reaches 71.75 % without ultrasound, and 83.69 % with 400 kHz ultrasound. The 40 kHz, 150 W ultrasound causes a cavitation of higher intensity, compared to 200 and 400 kHz ultrasounds. In this particular case, destruction of cavitation bubbles is very intensive. That is why a large amount of cavitation energy is being transformed into a heat, yielding the additional bath heating. The ultrasounds with higher frequencies (200 and 400 kHz) cannot use such a strong power. The applied powering this case reaches 0.6 W. The cavitation bubbles are now smaller the cavitation disintegration is not so strong, and the energy loss is much smaller, i.e. a smaller amount of energy has been transformed into a heat. An ultrasound of an equal power, but of higher frequency contributes to the somewhat higher exhaustion and fixing. The ultrasound dyeing produces much obscured colours, compared the standard. The differences are evident and not negligible. The comparison of the samples treated ultrasound of different frequencies during dyeing revealed the higher coulours intensities with the increase of ultrasound frequencies of the equal power (200 and 400 kHz). However, the increase is not so expressed

    Similar works