Field Tuning Beyond the Heat Death of a Charge-Density-Wave Chain

Abstract

Time-dependent driving of quantum systems has emerged as a powerful tool to engineer exotic phases far from thermal equilibrium; when the drive is periodic this is called Floquet engineering. The presence of many-body interactions can lead to runaway heating, so that generic systems are believed to heat up until they reach a featureless infinite-temperature state. Finding mechanisms to slow down or even avoid this heat death is a major goal -- one such mechanism is to drive toward an even distribution of electrons in momentum space. Here we show how such a mechanism avoids the heat death for a charge-density-wave chain in a strong dc electric field; minibands with nontrivial distribution functions develop as the current is prematurely driven to zero. We also show how the field strength tunes between positive, negative, or close-to-infinite effective temperatures for each miniband. These results suggest that nontrivial metastable distribution functions should be realized in the prethermal regime of quantum systems coupled to slow bosonic modes.Comment: 5 pages, 4 figures (plus supplemental material: 8 pages, 7 figures

    Similar works

    Full text

    thumbnail-image

    Available Versions