A numerical analysis of machining induced residual stresses of Grade 5 Titanium Alloy

Abstract

In general most manufacturing techniques alter the surface integrity of the final component. Surface integrity refers to the surface properties and their influence on the functional performance of manufactured components1. Machining induced residual stress is a surface integrity descriptor that may have a significant influence on the mechanical behavior of metallic parts subjected to dynamic loads2. Most manufacturing processes introduce some form of residual stress to the material. Cutting or more specifically machining involves large plastic deformation and elevated temperatures that may induce significant residual stresses in the surface and near surface region. When turning steel these stresses are largely tensile in nature and extend to a depth of approximately 200 μm1

    Similar works