New family of iterative methods with high order of convergence for solving nonlinear systems

Abstract

In this paper we present and analyze a set of predictor-corrector iterative methods with increasing order of convergence, for solving systems of nonlinear equations. Our aim is to achieve high order of convergence with few Jacobian and/or functional evaluations. On the other hand, by applying the pseudocomposition technique on each proposed scheme we get to increase their order of convergence, obtaining new high-order and efficient methods. We use the classical efficiency index in order to compare the obtained schemes and make some numerical test.This research was supported by Ministerio de Ciencia y Tecnología MTM2011-28636-C02-02 and by FONDOCYT 2011-1-B1-33, República Dominicana.Cordero Barbero, A.; Torregrosa Sánchez, JR.; Penkova Vassileva, M. (2013). New family of iterative methods with high order of convergence for solving nonlinear systems. En Numerical Analysis and Its Applications. Springer Verlag. 222-230. https://doi.org/10.1007/978-3-642-41515-9_23S222230Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A modified Newton-Jarratt’s composition. Numer. Algor. 55, 87–99 (2010)Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: Efficient high-order methods based on golden ratio for nonlinear systems. Applied Mathematics and Computation 217(9), 4548–4556 (2011)Cordero, A., Torregrosa, J.R.: Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation 190, 686–698 (2007)Cordero, A., Torregrosa, J.R.: On interpolation variants of Newton’s method for functions of several variables. Journal of Computational and Applied Mathematics 234, 34–43 (2010)Cordero, A., Torregrosa, J.R., Vassileva, M.P.: Pseudocomposition: a technique to design predictor-corrector methods for systms of nonlinear equtaions. Applied Mathematics and Computation 218(23), 11496–11504 (2012)Nikkhah-Bahrami, M., Oftadeh, R.: An effective iterative method for computing real and complex roots of systems of nonlinear equations. Applied Mathematics and Computation 215, 1813–1820 (2009)Ostrowski, A.M.: Solutions of equations and systems of equations. Academic Press, New York (1966)Shin, B.-C., Darvishi, M.T., Kim, C.-H.: A comparison of the Newton-Krylov method with high order Newton-like methods to solve nonlinear systems. Applied Mathematics and Computation 217, 3190–3198 (2010

    Similar works

    Full text

    thumbnail-image

    Available Versions