Abstract

Batch synchronization has been widely misunderstood as being only needed when variable trajectories have uneven length. Batch data are actually considered not synchronized when the key process events do not occur at the same point of process evolution, irrespective of whether the batch duration is the same for all batches or not. Additionally, a single synchronization procedure is usually applied to all batches without taking into account the nature of asynchronism of each batch, and the presence of abnormalities. This strategy may distort the original trajectories and decrease the signal-to-noise ratio, affecting the subsequent multivariate analyses. The approach proposed in this paper, named multisynchro, overcomes these pitfalls in scenarios of multiple asynchronisms. The different types of asynchronisms are effectively detected by using the warping information derived from synchronization. Each set of batch trajectories is synchronized by appropriate synchronization procedures, which are automatically selected based on the nature of asynchronisms present in data. The novel approach also includes a procedure that performs abnormality detection and batch synchronization in an iterative manner. Data from realistic simulations of a fermentation process of the Saccharomyces cerevisiae cultivation are used to illustrate the performance of the proposed approach in a context of multiple asynchronisms.This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2011-28112-C04-02. Part of this research work was carried out during an internship of the corresponding author at Shell Global Solutions International B.V. (Amsterdam, The Netherlands). The authors also thank the anonymous referees for their comments, which greatly helped to improve the text.González Martínez, JM.; De Noord, O.; Ferrer, A. (2014). Multi-synchro: a novel approach for batch synchronization in scenarios of multiple asynchronisms. Journal of Chemometrics. 28(5):462-475. https://doi.org/10.1002/cem.2620S462475285Kourti, T. (2009). Multivariate Statistical Process Control and Process Control, Using Latent Variables. Comprehensive Chemometrics, 21-54. doi:10.1016/b978-044452701-1.00013-2Wold, S., Kettaneh-Wold, N., MacGregor, J. F., & Dunn, K. G. (2009). Batch Process Modeling and MSPC. Comprehensive Chemometrics, 163-197. doi:10.1016/b978-044452701-1.00108-3Kourti, T. (2003). Abnormal situation detection, three-way data and projection methods; robust data archiving and modeling for industrial applications. Annual Reviews in Control, 27(2), 131-139. doi:10.1016/j.arcontrol.2003.10.004Lakshminarayanan S Gudi R Shah S Monitoring batch processes using multivariate statistical tools: extensions and practical issues. 1996 241 246Zarzo, M., & Ferrer, A. (2004). Batch process diagnosis: PLS with variable selection versus block-wise PCR. Chemometrics and Intelligent Laboratory Systems, 73(1), 15-27. doi:10.1016/j.chemolab.2003.11.009Louwerse, D. J., & Smilde, A. K. (2000). Multivariate statistical process control of batch processes based on three-way models. Chemical Engineering Science, 55(7), 1225-1235. doi:10.1016/s0009-2509(99)00408-xWesterhuis, J. A., Kourti, T., & MacGregor, J. F. (1999). Comparing alternative approaches for multivariate statistical analysis of batch process data. Journal of Chemometrics, 13(3-4), 397-413. doi:10.1002/(sici)1099-128x(199905/08)13:3/43.0.co;2-iNomikos, P., & MacGregor, J. F. (1994). Monitoring batch processes using multiway principal component analysis. AIChE Journal, 40(8), 1361-1375. doi:10.1002/aic.690400809Ündey, C., Ertunç, S., & Çınar, A. (2003). Online Batch/Fed-Batch Process Performance Monitoring, Quality Prediction, and Variable-Contribution Analysis for Diagnosis. Industrial & Engineering Chemistry Research, 42(20), 4645-4658. doi:10.1021/ie0208218Neogi, D., & Schlags, C. E. (1998). Multivariate Statistical Analysis of an Emulsion Batch Process. Industrial & Engineering Chemistry Research, 37(10), 3971-3979. doi:10.1021/ie980243oKourti, T., Lee, J., & Macgregor, J. F. (1996). Experiences with industrial applications of projection methods for multivariate statistical process control. Computers & Chemical Engineering, 20, S745-S750. doi:10.1016/0098-1354(96)00132-9Duchesne, C., Kourti, T., & MacGregor, J. F. (2002). Multivariate SPC for startups and grade transitions. AIChE Journal, 48(12), 2890-2901. doi:10.1002/aic.690481216Zhang, Y., Dudzic, M., & Vaculik, V. (2003). Integrated monitoring solution to start-up and run-time operations for continuous casting. Annual Reviews in Control, 27(2), 141-149. doi:10.1016/j.arcontrol.2003.10.002Rothwell SG Martin EB Morris AJ Comparison of methods for handling unequal length batches 1998 66 71García-Muñoz, S., Kourti, T., MacGregor, J. F., Mateos, A. G., & Murphy, G. (2003). Troubleshooting of an Industrial Batch Process Using Multivariate Methods. Industrial & Engineering Chemistry Research, 42(15), 3592-3601. doi:10.1021/ie0300023Wold, S., Kettaneh, N., Fridén, H., & Holmberg, A. (1998). Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometrics and Intelligent Laboratory Systems, 44(1-2), 331-340. doi:10.1016/s0169-7439(98)00162-2Kaistha, N., & Moore, C. F. (2001). Extraction of Event Times in Batch Profiles for Time Synchronization and Quality Predictions. Industrial & Engineering Chemistry Research, 40(1), 252-260. doi:10.1021/ie990937cRamsay, J. O., & Silverman, B. W. (1997). Functional Data Analysis. Springer Series in Statistics. doi:10.1007/978-1-4757-7107-7Statistical monitoring of multistage, multiphase batch processes. (2002). IEEE Control Systems, 22(5), 40-52. doi:10.1109/mcs.2002.1035216Andersen, S. W., & Runger, G. C. (2012). Automated feature extraction from profiles with application to a batch fermentation process. Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(2), 327-344. doi:10.1111/j.1467-9876.2011.01032.xSrinivasan, R., & Qian, M. S. (2005). Off-line Temporal Signal Comparison Using Singular Points Augmented Time Warping. Industrial & Engineering Chemistry Research, 44(13), 4697-4716. doi:10.1021/ie049528tSrinivasan, R., & Sheng Qian, M. (2006). Online fault diagnosis and state identification during process transitions using dynamic locus analysis. Chemical Engineering Science, 61(18), 6109-6132. doi:10.1016/j.ces.2006.05.037Srinivasan, R., & Qian, M. (2007). Online Temporal Signal Comparison Using Singular Points Augmented Time Warping. Industrial & Engineering Chemistry Research, 46(13), 4531-4548. doi:10.1021/ie060111sChen, J., & Liu, J. (2000). Post analysis on different operating time processes using orthonormal function approximation and multiway principal component analysis. Journal of Process Control, 10(5), 411-418. doi:10.1016/s0959-1524(00)00016-0Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43-49. doi:10.1109/tassp.1978.1163055Nielsen, N.-P. V., Carstensen, J. M., & Smedsgaard, J. (1998). Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. Journal of Chromatography A, 805(1-2), 17-35. doi:10.1016/s0021-9673(98)00021-1Pravdova, V., Walczak, B., & Massart, D. L. (2002). A comparison of two algorithms for warping of analytical signals. Analytica Chimica Acta, 456(1), 77-92. doi:10.1016/s0003-2670(02)00008-9Tomasi, G., van den Berg, F., & Andersson, C. (2004). Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. Journal of Chemometrics, 18(5), 231-241. doi:10.1002/cem.859Kassidas, A., MacGregor, J. F., & Taylor, P. A. (1998). Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 44(4), 864-875. doi:10.1002/aic.690440412Gollmer, K., & Posten, C. (1996). Supervision of bioprocesses using a dynamic time warping algorithm. Control Engineering Practice, 4(9), 1287-1295. doi:10.1016/0967-0661(96)00136-0Ramaker, H.-J., van Sprang, E. N. M., Westerhuis, J. A., & Smilde, A. K. (2003). Dynamic time warping of spectroscopic BATCH data. Analytica Chimica Acta, 498(1-2), 133-153. doi:10.1016/j.aca.2003.08.045Fransson, M., & Folestad, S. (2006). Real-time alignment of batch process data using COW for on-line process monitoring. Chemometrics and Intelligent Laboratory Systems, 84(1-2), 56-61. doi:10.1016/j.chemolab.2006.04.020González-Martínez, J. M., Ferrer, A., & Westerhuis, J. A. (2011). Real-time synchronization of batch trajectories for on-line multivariate statistical process control using Dynamic Time Warping. Chemometrics and Intelligent Laboratory Systems, 105(2), 195-206. doi:10.1016/j.chemolab.2011.01.003Gins, G., Van den Kerkhof, P., & Van Impe, J. F. M. (2012). Hybrid Derivative Dynamic Time Warping for Online Industrial Batch-End Quality Estimation. Industrial & Engineering Chemistry Research, 51(17), 6071-6084. doi:10.1021/ie2019068Zhang Y Edgar TF A robust dynamic time warping algorithm for batch trajectory synchronization 2008 2864 2869González-Martínez, J. M., Westerhuis, J. A., & Ferrer, A. (2013). Using warping information for batch process monitoring and fault classification. Chemometrics and Intelligent Laboratory Systems, 127, 210-217. doi:10.1016/j.chemolab.2013.07.003Kourti, T. (2003). Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions. Journal of Chemometrics, 17(1), 93-109. doi:10.1002/cem.778González-Martínez, J. M., Camacho, J., & Ferrer, A. (2013). Bilinear modeling of batch processes. Part III: parameter stability. Journal of Chemometrics, 28(1), 10-27. doi:10.1002/cem.2562Camacho, J., & Ferrer, A. (2014). Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical aspects. Chemometrics and Intelligent Laboratory Systems, 131, 37-50. doi:10.1016/j.chemolab.2013.12.003Arteaga, F., & Ferrer, A. (2002). Dealing with missing data in MSPC: several methods, different interpretations, some examples. Journal of Chemometrics, 16(8-10), 408-418. doi:10.1002/cem.750Lei, F., Rotbøll, M., & Jørgensen, S. B. (2001). A biochemically structured model for Saccharomyces cerevisiae. Journal of Biotechnology, 88(3), 205-221. doi:10.1016/s0168-1656(01)00269-3Camacho J González-Martínez JM Ferrer A Multi-phase (MP) toolbox 2013 http://mseg.webs.upv.es/Software.htmlUMETRICS SIMCA 13.0.3 Umea, Sweden 2013 [email protected] www.umetrics.comGonzález-Martínez, J. M., Vitale, R., de Noord, O. E., & Ferrer, A. (2014). Effect of Synchronization on Bilinear Batch Process Modeling. Industrial & Engineering Chemistry Research, 53(11), 4339-4351. doi:10.1021/ie402052

    Similar works

    Full text

    thumbnail-image

    Available Versions