On-line product quality and process failure monitoring in freeze-drying of pharmaceutical products

Abstract

This is an Author's Accepted Manuscript of Domenico Colucci, José M. Prats-Montalbán, Alberto Ferrer & Davide Fissore (2021) On-line product quality and process failure monitoring in freeze-drying of pharmaceutical products, Drying Technology, 39:2, 134-147, DOI: 10.1080/07373937.2019.1614949 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/07373937.2019.1614949[EN] In this work the information provided by a noninvasive imaging sensor was used to develop two algorithms for real time fault detection and product quality monitoring during the Vacuum Freeze-Drying of single dose pharmaceuticals. Two algorithms based on multivariate statistical techniques, namely Principal Component Analysis and Partial Least Square Regression, were developed and compared. Five batches obtained under Normal Operating Conditions were used to train a reference model of the process; the classification abilities of these algorithms were tested on five more batches simulating different kind of faults. Good classification performances have been obtained with both algorithms. Coupling the information obtained from an infrared camera with that of other variables obtained from the PLC of the equipment, and from the textural analysis performed on the RGB images of the product, strongly improves the performances of the algorithms. The proposed algorithms can account for the heterogeneity of the batch and aim to reduce the off-specification products.This research work was partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under the project DPI2017-82896-C2-1-R.Colucci, D.; Prats-Montalbán, JM.; Ferrer, A.; Fissore, D. (2021). On-line product quality and process failure monitoring in freeze-drying of pharmaceutical products. Drying Technology. 39(2):134-147. https://doi.org/10.1080/07373937.2019.1614949S134147392Jennings, T. A. (1999). Lyophilization. doi:10.1201/b14424PIKAL, M., SHAH, S., ROY, M., & PUTMAN, R. (1990). The secondary drying stage of freeze drying: drying kinetics as a function of temperature and chamber pressure☆. International Journal of Pharmaceutics, 60(3), 203-207. doi:10.1016/0378-5173(90)90074-eU. S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary, Medicine (CVM), Office of Regulatory Affairs (ORA), Pharmaceutical CGMPs. September 2004. Guidance for Industry, PAT – A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance, 2004. https://www.fda.gov/downloads/drugs/guidances/ucm070305.pdf (accessed Jan 2019).Barresi, A. A., Pisano, R., Fissore, D., Rasetto, V., Velardi, S. A., Vallan, A., … Galan, M. (2009). Monitoring of the primary drying of a lyophilization process in vials. Chemical Engineering and Processing: Process Intensification, 48(1), 408-423. doi:10.1016/j.cep.2008.05.004Patel, S. M., & Pikal, M. (2009). Process Analytical Technologies (PAT) in freeze-drying of parenteral products. Pharmaceutical Development and Technology, 14(6), 567-587. doi:10.3109/10837450903295116Fissore, D., Pisano, R., & Barresi, A. A. (2018). Process analytical technology for monitoring pharmaceuticals freeze-drying – A comprehensive review. Drying Technology, 36(15), 1839-1865. doi:10.1080/07373937.2018.1440590Barresi, A. A., Pisano, R., Rasetto, V., Fissore, D., & Marchisio, D. L. (2010). Model-Based Monitoring and Control of Industrial Freeze-Drying Processes: Effect of Batch Nonuniformity. Drying Technology, 28(5), 577-590. doi:10.1080/07373931003787934Pisano, R., Fissore, D., & Barresi, A. A. (2014). Intensification of Freeze-Drying for the Pharmaceutical and Food Industries. Modern Drying Technology, 131-161. doi:10.1002/9783527631704.ch05Fissore, D.; Pisano, R.; Barresi, A. On the Use of Temperature Measurement to Monitor a Freeze-Drying Process for Pharmaceuticals. Proceedings of IEEE International Instrumentation and Measurement Technology Conference “I2MTC 2017”, Torino, Italy, May 22–25, 2017; pp. 1276–1281.Bosca, S., Corbellini, S., Barresi, A. A., & Fissore, D. (2013). Freeze-Drying Monitoring Using a New Process Analytical Technology: Toward a «Zero Defect» Process. Drying Technology, 31(15), 1744-1755. doi:10.1080/07373937.2013.807431Grassini, S., Parvis, M., & Barresi, A. A. (2013). Inert Thermocouple With Nanometric Thickness for Lyophilization Monitoring. IEEE Transactions on Instrumentation and Measurement, 62(5), 1276-1283. doi:10.1109/tim.2012.2223312Emteborg, H., Zeleny, R., Charoud-Got, J., Martos, G., Lüddeke, J., Schellin, H., & Teipel, K. (2014). Infrared Thermography for Monitoring of Freeze-Drying Processes: Instrumental Developments and Preliminary Results. Journal of Pharmaceutical Sciences, 103(7), 2088-2097. doi:10.1002/jps.24017Van Bockstal, P.-J., Corver, J., De Meyer, L., Vervaet, C., & De Beer, T. (2018). Thermal Imaging as a Noncontact Inline Process Analytical Tool for Product Temperature Monitoring during Continuous Freeze-Drying of Unit Doses. Analytical Chemistry, 90(22), 13591-13599. doi:10.1021/acs.analchem.8b03788Lietta, E., Colucci, D., Distefano, G., & Fissore, D. (2019). On the Use of Infrared Thermography for Monitoring a Vial Freeze-Drying Process. Journal of Pharmaceutical Sciences, 108(1), 391-398. doi:10.1016/j.xphs.2018.07.025Velardi, S. A., & Barresi, A. A. (2008). Development of simplified models for the freeze-drying process and investigation of the optimal operating conditions. Chemical Engineering Research and Design, 86(1), 9-22. doi:10.1016/j.cherd.2007.10.007Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572. doi:10.1080/14786440109462720Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(7), 498-520. doi:10.1037/h0070888Nomikos, P., & MacGregor, J. F. (1994). Monitoring batch processes using multiway principal component analysis. AIChE Journal, 40(8), 1361-1375. doi:10.1002/aic.690400809Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1Nomikos, P., & MacGregor, J. F. (1995). Multi-way partial least squares in monitoring batch processes. Chemometrics and Intelligent Laboratory Systems, 30(1), 97-108. doi:10.1016/0169-7439(95)00043-7Kourti, T. (2006). Process Analytical Technology Beyond Real-Time Analyzers: The Role of Multivariate Analysis. Critical Reviews in Analytical Chemistry, 36(3-4), 257-278. doi:10.1080/10408340600969957Van Sprang, E. N. ., Ramaker, H.-J., Westerhuis, J. A., Gurden, S. P., & Smilde, A. K. (2002). Critical evaluation of approaches for on-line batch process monitoring. Chemical Engineering Science, 57(18), 3979-3991. doi:10.1016/s0009-2509(02)00338-xRato, T. J., Rendall, R., Gomes, V., Chin, S.-T., Chiang, L. H., Saraiva, P. M., & Reis, M. S. (2016). A Systematic Methodology for Comparing Batch Process Monitoring Methods: Part I—Assessing Detection Strength. Industrial & Engineering Chemistry Research, 55(18), 5342-5358. doi:10.1021/acs.iecr.5b04851Rato, T. J., Rendall, R., Gomes, V., Saraiva, P. M., & Reis, M. S. (2018). A Systematic Methodology for Comparing Batch Process Monitoring Methods: Part II—Assessing Detection Speed. Industrial & Engineering Chemistry Research, 57(15), 5338-5350. doi:10.1021/acs.iecr.7b04911Bharati, M. H., & MacGregor, J. F. (1998). Multivariate Image Analysis for Real-Time Process Monitoring and Control. Industrial & Engineering Chemistry Research, 37(12), 4715-4724. doi:10.1021/ie980334lPrats-Montalbán, J. M., de Juan, A., & Ferrer, A. (2011). Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems, 107(1), 1-23. doi:10.1016/j.chemolab.2011.03.002Duchesne, C., Liu, J. J., & MacGregor, J. F. (2012). Multivariate image analysis in the process industries: A review. Chemometrics and Intelligent Laboratory Systems, 117, 116-128. doi:10.1016/j.chemolab.2012.04.003Colucci, D., Prats-Montalbán, J. M., Fissore, D., & Ferrer, A. (2019). Application of multivariate image analysis for on-line monitoring of a freeze-drying process for pharmaceutical products in vials. Chemometrics and Intelligent Laboratory Systems, 187, 19-27. doi:10.1016/j.chemolab.2019.02.004Kourti, T. (2005). Application of latent variable methods to process control and multivariate statistical process control in industry. International Journal of Adaptive Control and Signal Processing, 19(4), 213-246. doi:10.1002/acs.859Kourti, T. (2003). Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions. Journal of Chemometrics, 17(1), 93-109. doi:10.1002/cem.778Camacho, J., Picó, J., & Ferrer, A. (2009). The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter? Analytica Chimica Acta, 642(1-2), 59-68. doi:10.1016/j.aca.2009.02.001Kourti, T., Nomikos, P., & MacGregor, J. F. (1995). Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS. Journal of Process Control, 5(4), 277-284. doi:10.1016/0959-1524(95)00019-mPatel, S. M., Doen, T., & Pikal, M. J. (2010). Determination of End Point of Primary Drying in Freeze-Drying Process Control. AAPS PharmSciTech, 11(1), 73-84. doi:10.1208/s12249-009-9362-7Kourti, T., & MacGregor, J. F. (1996). Multivariate SPC Methods for Process and Product Monitoring. Journal of Quality Technology, 28(4), 409-428. doi:10.1080/00224065.1996.11979699Nomikos, P. Statistical Process Control of Batch Processes. PhD diss., McMaster University, Hamilton, Ontario, 1995.Arteaga, F., & Ferrer, A. (2002). Dealing with missing data in MSPC: several methods, different interpretations, some examples. Journal of Chemometrics, 16(8-10), 408-418. doi:10.1002/cem.750Arteaga, F., & Ferrer, A. (2005). Framework for regression-based missing data imputation methods in on-line MSPC. Journal of Chemometrics, 19(8), 439-447. doi:10.1002/cem.946García-Muñoz, S., Kourti, T., & MacGregor, J. F. (2004). Model Predictive Monitoring for Batch Processes. Industrial & Engineering Chemistry Research, 43(18), 5929-5941. doi:10.1021/ie034020wCamacho, J., Picó, J., & Ferrer, A. (2008). Bilinear modelling of batch processes. Part II: a comparison of PLS soft-sensors. Journal of Chemometrics, 22(10), 533-547. doi:10.1002/cem.1179Folch-Fortuny, A., Arteaga, F., & Ferrer, A. (2017). PLS model building with missing data: New algorithms and a comparative study. Journal of Chemometrics, 31(7), e2897. doi:10.1002/cem.2897Bharati, M. H.; MacGregor, J. F. Texture Analysis of Images Using Principal Component Analysis. Proceeding of SPIE/Photonics Conference on Process Imaging for Automatic Control, Boston, 2000; pp 27–37.Bellows, R. J., & King, C. J. (1972). Freeze-drying of aqueous solutions: Maximum allowable operating temperature. Cryobiology, 9(6), 559-561. doi:10.1016/0011-2240(72)90179-4Tsourouflis, S., Flink, J. M., & Karel, M. (1976). Loss of structure in freeze-dried carbohydrates solutions: Effect of temperature, moisture content and composition. Journal of the Science of Food and Agriculture, 27(6), 509-519. doi:10.1002/jsfa.2740270604Prats-Montalbán, J. M., & Ferrer, A. (2014). Statistical process control based on Multivariate Image Analysis: A new proposal for monitoring and defect detection. Computers & Chemical Engineering, 71, 501-511. doi:10.1016/j.compchemeng.2014.09.014Camacho, J., Picó, J., & Ferrer, A. (2008). Multi-phase analysis framework for handling batch process data. Journal of Chemometrics, 22(11-12), 632-643. doi:10.1002/cem.115

    Similar works