A reliable token-based MAC protocol for delay sensitive platooning applications

Abstract

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Platooning is both a challenging and rewarding application. Challenging since strict timing and reliability requirements are imposed by the distributed control system required to operate the platoon. Rewarding since considerable fuel reductions are possible. As platooning takes place in a vehicular ad hoc network, the use of IEEE 802.11p is close to mandatory. However, the 802.11p medium access method suffers from packet collisions and random delays. Most ongoing research suggests using TDMA on top of 802.11p as a potential remedy. However, TDMA requires synchronization and is not very flexible if the beacon frequency needs to be updated, the number of platoon member changes or if retransmissions for increased reliability are required. We therefore suggest a token-passing medium access method where the next token holder is selected based on beacon data age. This has the advantage of allowing beacons to be re-broadcasted in each beacon interval whenever time and bandwidth is available. We show that our token-based method is able to reduce the data age and increase reliability considerably compared to pure 802.11p.This work was partially supported by the Ministerio de Ciencia e Innovación, Spain, under Grant TIN2011-27543- C03-01. Balador is funded by ERASMUS+ programme, and Böhm and Uhlemann are also funded by the Knowledge Foundation through the ACDC projectBalador, A.; Böhm, A.; Uhlemann, E.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC. (2015). A reliable token-based MAC protocol for delay sensitive platooning applications. IEEE. https://doi.org/10.1109/VTCFall.2015.7390813

    Similar works

    Full text

    thumbnail-image

    Available Versions