Many studies of mechanical systems in engineering are based on second-order matrix models.
This work discusses the second-order generalization of previous research on matrix differential
equations dealing with the construction of approximate solutions for non-stiff initial
problems Y
00(x) = f(x, Y (x), Y 0
(x)) using higher-degree matrix splines without any dimensional
increase. An estimation of the approximation error for some illustrative examples are
presented by using Mathematica. Several MatLab functions have also been developed, comparing,
under equal conditions, accuracy and execution times with built-in MatLab functions.
Experimental results show the advantages of solving the above initial problem by using the
implemented MatLab functions.The authors wish to thank for financial support by the Universidad Politecnica de Valencia [grant number PAID-06-11-2020].Defez Candel, E.; Tung ., MM.; Solis Lozano, FJ.; Ibáñez González, JJ. (2015). Numerical approximations of second-order matrix differential equations using higher-degree splines. Linear and Multilinear Algebra. 63(3):472-489. https://doi.org/10.1080/03081087.2013.873427S472489633Loscalzo, F. R., & Talbot, T. D. (1967). Spline Function Approximations for Solutions of Ordinary Differential Equations. SIAM Journal on Numerical Analysis, 4(3), 433-445. doi:10.1137/0704038Al-Said, E. A. (2001). The use of cubic splines in the numerical solution of a system of second-order boundary value problems. Computers & Mathematics with Applications, 42(6-7), 861-869. doi:10.1016/s0898-1221(01)00204-8Al-Said, E. A., & Noor, M. A. (2003). Cubic splines method for a system of third-order boundary value problems. Applied Mathematics and Computation, 142(2-3), 195-204. doi:10.1016/s0096-3003(02)00294-1Kadalbajoo, M. K., & Patidar, K. C. (2002). Numerical solution of singularly perturbed two-point boundary value problems by spline in tension. Applied Mathematics and Computation, 131(2-3), 299-320. doi:10.1016/s0096-3003(01)00146-1Micula, G., & Revnic, A. (2000). An implicit numerical spline method for systems for ODEs. Applied Mathematics and Computation, 111(1), 121-132. doi:10.1016/s0096-3003(98)10111-xDefez, E., Soler, L., Hervás, A., & Santamaría, C. (2005). Numerical solution ofmatrix differential models using cubic matrix splines. Computers & Mathematics with Applications, 50(5-6), 693-699. doi:10.1016/j.camwa.2005.04.012Defez, E., Hervás, A., Soler, L., & Tung, M. M. (2007). Numerical solutions of matrix differential models using cubic matrix splines II. Mathematical and Computer Modelling, 46(5-6), 657-669. doi:10.1016/j.mcm.2006.11.027Ascher, U., Pruess, S., & Russell, R. D. (1983). On Spline Basis Selection for Solving Differential Equations. SIAM Journal on Numerical Analysis, 20(1), 121-142. doi:10.1137/0720009Brunner, H. (2004). On the Divergence of Collocation Solutions in Smooth Piecewise Polynomial Spaces for Volterra Integral Equations. BIT Numerical Mathematics, 44(4), 631-650. doi:10.1007/s10543-004-3828-5Tung, M. M., Defez, E., & Sastre, J. (2008). Numerical solutions of second-order matrix models using cubic-matrix splines. Computers & Mathematics with Applications, 56(10), 2561-2571. doi:10.1016/j.camwa.2008.05.022Defez, E., Tung, M. M., Ibáñez, J. J., & Sastre, J. (2012). Approximating and computing nonlinear matrix differential models. Mathematical and Computer Modelling, 55(7-8), 2012-2022. doi:10.1016/j.mcm.2011.11.060Claeyssen, J. R., Canahualpa, G., & Jung, C. (1999). A direct approach to second-order matrix non-classical vibrating equations. Applied Numerical Mathematics, 30(1), 65-78. doi:10.1016/s0168-9274(98)00085-3Froese, C. (1963). NUMERICAL SOLUTION OF THE HARTREE–FOCK EQUATIONS. Canadian Journal of Physics, 41(11), 1895-1910. doi:10.1139/p63-189Marzulli, P. (1991). Global error estimates for the standard parallel shooting method. Journal of Computational and Applied Mathematics, 34(2), 233-241. doi:10.1016/0377-0427(91)90045-lShore, B. W. (1973). Comparison of matrix methods applied to the radial Schrödinger eigenvalue equation: The Morse potential. The Journal of Chemical Physics, 59(12), 6450-6463. doi:10.1063/1.1680025ZHANG, J. F. (2002). OPTIMAL CONTROL FOR MECHANICAL VIBRATION SYSTEMS BASED ON SECOND-ORDER MATRIX EQUATIONS. Mechanical Systems and Signal Processing, 16(1), 61-67. doi:10.1006/mssp.2001.1441Flett, T. M. (1980). Differential Analysis. doi:10.1017/cbo978051189719