A Robust Adiabatic Model for a Quasi-Steady Prediction of Far-Off Non-Measured Performance in Vaneless Twin-Entry or Dual-Volute Radial Turbines

Abstract

[EN] The current investigation describes in detail a mass flow oriented model for extrapolation of reduced mass flow and adiabatic efficiency of double entry radial inflow turbines under any unequal and partial flow admission conditions. The model is based on a novel approach, which proposes assimilating double entry turbines to two variable geometry turbines (VGTs) using the mass flow ratio ( MFR ) between the two entries as the discriminating parameter. With such an innovative approach, the model can extrapolate performance parameters to non-measured MFR s, blade-to-jet speed ratios, and reduced speeds. Therefore, the model can be used in a quasi-steady method for predicting double entry turbines performance instantaneously. The model was validated against a dataset from two different double entry turbine types: a twin-entry symmetrical turbine and a dual-volute asymmetrical turbine. Both were tested under steady flow conditions. The proposed model showed accurate results and a coherent set of fitting parameters with physical meaning, as discussed in this paper. The obtained parameters showed very similar figures for the aforementioned turbine types, which allows concluding that they are an adequate set of values for initializing the fitting procedure of any type of double entry radial turbine.Vishnu Samala is partially supported through contract FPI-2017-S2-1256 of Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politecnica de Valencia. This work was partially funded by the 'Ayuda a Primeros Proyectos de Investigacion' (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Valencia, Spain.Serrano, J.; Arnau Martínez, FJ.; García-Cuevas González, LM.; Samala, V. (2020). A Robust Adiabatic Model for a Quasi-Steady Prediction of Far-Off Non-Measured Performance in Vaneless Twin-Entry or Dual-Volute Radial Turbines. Applied Sciences. 10(6):1-43. https://doi.org/10.3390/app10061955S143106Haq, G., & Weiss, M. (2016). CO2 labelling of passenger cars in Europe: Status, challenges, and future prospects. Energy Policy, 95, 324-335. doi:10.1016/j.enpol.2016.04.043Wang, S., Zhao, F., Liu, Z., & Hao, H. (2017). Heuristic method for automakers’ technological strategy making towards fuel economy regulations based on genetic algorithm: A China’s case under corporate average fuel consumption regulation. Applied Energy, 204, 544-559. doi:10.1016/j.apenergy.2017.07.076Kalghatgi, G. (2018). Is it really the end of internal combustion engines and petroleum in transport? Applied Energy, 225, 965-974. doi:10.1016/j.apenergy.2018.05.076Serrano, J. (2017). Imagining the Future of the Internal Combustion Engine for Ground Transport in the Current Context. Applied Sciences, 7(10), 1001. doi:10.3390/app7101001Kruiswyk, R. W. (2012). The role of turbocompound in the era of emissions reduction. 10th International Conference on Turbochargers and Turbocharging, 269-280. doi:10.1533/9780857096135.5.269Yang, M., Deng, K., Martines-Botas, R., & Zhuge, W. (2016). An investigation on unsteadiness of a mixed-flow turbine under pulsating conditions. Energy Conversion and Management, 110, 51-58. doi:10.1016/j.enconman.2015.12.007Zhu, D., & Zheng, X. (2017). Asymmetric twin-scroll turbocharging in diesel engines for energy and emission improvement. Energy, 141, 702-714. doi:10.1016/j.energy.2017.07.173Romagnoli, A., Copeland, C. D., Martinez-Botas, R., Seiler, M., Rajoo, S., & Costall, A. (2012). Comparison Between the Steady Performance of Double-Entry and Twin-Entry Turbocharger Turbines. Journal of Turbomachinery, 135(1). doi:10.1115/1.4006566Serrano, J. R., Arnau, F. J., Gracía-Cuevas, L. M., Samala, V., & Smith, L. (2019). Experimental approach for the characterization and performance analysis of twin entry radial-inflow turbines in a gas stand and with different flow admission conditions. Applied Thermal Engineering, 159, 113737. doi:10.1016/j.applthermaleng.2019.113737Watson, N., & Janota, M. S. (1982). Turbocharging the Internal Combustion Engine. doi:10.1007/978-1-349-04024-7Cerdoun, M., & Ghenaiet, A. (2016). Characterization of a Twin-Entry Radial Turbine under Pulsatile Flow Condition. International Journal of Rotating Machinery, 2016, 1-15. doi:10.1155/2016/4618298Winkler, N., Ångström, H.-E., & Olofsson, U. (2005). Instantaneous On-Engine Twin-Entry Turbine Efficiency Calculations on a Diesel Engine. SAE Technical Paper Series. doi:10.4271/2005-01-3887Fiaschi, D., Lifshitz, A., Manfrida, G., & Tempesti, D. (2014). An innovative ORC power plant layout for heat and power generation from medium- to low-temperature geothermal resources. Energy Conversion and Management, 88, 883-893. doi:10.1016/j.enconman.2014.08.058Zare, V. (2015). A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Conversion and Management, 105, 127-138. doi:10.1016/j.enconman.2015.07.073Daabo, A. M., Al Jubori, A., Mahmoud, S., & Al-Dadah, R. K. (2016). Parametric study of efficient small-scale axial and radial turbines for solar powered Brayton cycle application. Energy Conversion and Management, 128, 343-360. doi:10.1016/j.enconman.2016.09.060Cheng, Z., Tong, S., & Tong, Z. (2019). Bi-directional nozzle control of multistage radial-inflow turbine for optimal part-load operation of compressed air energy storage. Energy Conversion and Management, 181, 485-500. doi:10.1016/j.enconman.2018.12.014Wei, D., Lu, X., Lu, Z., & Gu, J. (2007). Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery. Energy Conversion and Management, 48(4), 1113-1119. doi:10.1016/j.enconman.2006.10.020Cho, C.-H., Cho, S.-Y., & Ahn, K.-Y. (2010). A study of partial admission characteristics on a small-scale radial-inflow turbine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 224(5), 737-748. doi:10.1243/09576509jpe865Cho, S.-Y., Cho, C.-H., Ahn, K.-Y., & Lee, Y. D. (2014). A study of the optimal operating conditions in the organic Rankine cycle using a turbo-expander for fluctuations of the available thermal energy. Energy, 64, 900-911. doi:10.1016/j.energy.2013.11.013Shin, H., Cho, J., Baik, Y.-J., Cho, J., Roh, C., Ra, H.-S., … Huh, J. (2017). Partial Admission, Axial Impulse Type Turbine Design and Partial Admission Radial Turbine Test for SCO2 Cycle. Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy. doi:10.1115/gt2017-64349Ding, Z., Zhuge, W., Zhang, Y., Chen, H., Martinez-Botas, R., & Yang, M. (2017). A one-dimensional unsteady performance model for turbocharger turbines. Energy, 132, 341-355. doi:10.1016/j.energy.2017.04.154Martin, G., Talon, V., Higelin, P., Charlet, A., & Caillol, C. (2009). Implementing Turbomachinery Physics into Data Map-Based Turbocharger Models. SAE International Journal of Engines, 2(1), 211-229. doi:10.4271/2009-01-0310Fang, X., & Dai, Q. (2010). Modeling of turbine mass flow rate performances using the Taylor expansion. Applied Thermal Engineering, 30(13), 1824-1831. doi:10.1016/j.applthermaleng.2010.04.016Romagnoli, A., & Martinez-Botas, R. (2011). Performance prediction of a nozzled and nozzleless mixed-flow turbine in steady conditions. International Journal of Mechanical Sciences, 53(8), 557-574. doi:10.1016/j.ijmecsci.2011.05.003Chiong, M. S., Rajoo, S., Romagnoli, A., Costall, A. W., & Martinez-Botas, R. F. (2014). Integration of meanline and one-dimensional methods for prediction of pulsating performance of a turbocharger turbine. Energy Conversion and Management, 81, 270-281. doi:10.1016/j.enconman.2014.01.043Serrano, J. R., Arnau, F. J., Dolz, V., Tiseira, A., & Cervelló, C. (2008). A model of turbocharger radial turbines appropriate to be used in zero- and one-dimensional gas dynamics codes for internal combustion engines modelling. Energy Conversion and Management, 49(12), 3729-3745. doi:10.1016/j.enconman.2008.06.031Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., Dombrovsky, A., & Tartoussi, H. (2016). Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions. Energy Conversion and Management, 128, 281-293. doi:10.1016/j.enconman.2016.09.032Serrano, J. R., Arnau, F. J., García-Cuevas, L. M., & Inhestern, L. B. (2019). An innovative losses model for efficiency map fitting of vaneless and variable vaned radial turbines extrapolating towards extreme off-design conditions. Energy, 180, 626-639. doi:10.1016/j.energy.2019.05.062Chiong, M. S., Rajoo, S., Martinez-Botas, R. F., & Costall, A. W. (2012). Engine turbocharger performance prediction: One-dimensional modeling of a twin entry turbine. Energy Conversion and Management, 57, 68-78. doi:10.1016/j.enconman.2011.12.001Costall, A. W., McDavid, R. M., Martinez-Botas, R. F., & Baines, N. C. (2010). Pulse Performance Modeling of a Twin Entry Turbocharger Turbine Under Full and Unequal Admission. Journal of Turbomachinery, 133(2). doi:10.1115/1.4000566Newton, P., Romagnoli, A., Martinez-Botas, R., Copeland, C., & Seiler, M. (2013). A Method of Map Extrapolation for Unequal and Partial Admission in a Double Entry Turbine. Journal of Turbomachinery, 136(6). doi:10.1115/1.4025763Chiong, M. S., Rajoo, S., Romagnoli, A., Costall, A. W., & Martinez-Botas, R. F. (2016). One-dimensional pulse-flow modeling of a twin-scroll turbine. Energy, 115, 1291-1304. doi:10.1016/j.energy.2016.09.041Fredriksson, C. F., Qiu, X., Baines, N. C., Müller, M., Brinkert, N., & Gutmann, C. (2012). Meanline Modeling of Radial Inflow Turbine With Twin-Entry Scroll. Volume 5: Manufacturing Materials and Metallurgy; Marine; Microturbines and Small Turbomachinery; Supercritical CO2 Power Cycles. doi:10.1115/gt2012-69018Macek, J., Zak, Z., & Vitek, O. (2015). Physical Model of a Twin-scroll Turbine with Unsteady Flow. SAE Technical Paper Series. doi:10.4271/2015-01-1718Palenschat, T., Mueller, M., Rajoo, S., Chiong, M. S., Newton, P., Martinez-Botas, R., & Tan, F. X. (2018). Steady-State Experimental and Meanline Study of an Asymmetric Twin-Scroll Turbine at Full and Unequal and Partial Admission Conditions. SAE Technical Paper Series. doi:10.4271/2018-01-0971Brinkert, N., Sumser, S., Weber, S., Fieweger, K., Schulz, A., & Bauer, H.-J. (2012). Understanding the Twin Scroll Turbine: Flow Similarity. Journal of Turbomachinery, 135(2). doi:10.1115/1.4006607Semlitsch, B., Wang, Y., & Mihăescu, M. (2015). Flow effects due to valve and piston motion in an internal combustion engine exhaust port. Energy Conversion and Management, 96, 18-30. doi:10.1016/j.enconman.2015.02.058Serrano, J. R., Tiseira, A., García-Cuevas, L. M., Inhestern, L. B., & Tartoussi, H. (2017). Radial turbine performance measurement under extreme off-design conditions. Energy, 125, 72-84. doi:10.1016/j.energy.2017.02.118Payri, F., Serrano, J. R., Fajardo, P., Reyes-Belmonte, M. A., & Gozalbo-Belles, R. (2012). A physically based methodology to extrapolate performance maps of radial turbines. Energy Conversion and Management, 55, 149-163. doi:10.1016/j.enconman.2011.11.003Xue, Y., Yang, M., Martinez-Botas, R. F., Romagnoli, A., & Deng, K. (2019). Loss analysis of a mix-flow turbine with nozzled twin-entry volute at different admissions. Energy, 166, 775-788. doi:10.1016/j.energy.2018.10.075Serrano, J. R., Navarro, R., García-Cuevas, L. M., & Inhestern, L. B. (2018). Turbocharger turbine rotor tip leakage loss and mass flow model valid up to extreme off-design conditions with high blade to jet speed ratio. Energy, 147, 1299-1310. doi:10.1016/j.energy.2018.01.083Serrano, J. R., Olmeda, P., Arnau, F. J., & Samala, V. (2019). A holistic methodology to correct heat transfer and bearing friction losses from hot turbocharger maps in order to obtain adiabatic efficiency of the turbomachinery. International Journal of Engine Research, 21(8), 1314-1335. doi:10.1177/1468087419834194Harrell, F. E. (2001). Ordinal Logistic Regression. Springer Series in Statistics, 331-343. doi:10.1007/978-1-4757-3462-1_1

    Similar works