Ovarian transcriptomic analysis reveals differential expression genes associated with cell death process after selection for ovulation rate in rabbits

Abstract

[EN] Transcriptomic analysis showed nineteen potential biomarkers in ovarian tissue from females belonged to a rabbit line selected for ovulation rate for 10 generations and the control line. These females differed not only in ovulation rate but also in prenatal survival since similar litter size were observed. Litter size is an essential trait in rabbit meat production but with low heritability. A selection experiment for ovulation rate has been performed for 10 generations to improve litter size in rabbits. The selected line increased two ova more than the control line but nevertheless a negative correlation was observed with prenatal survival. A transcriptomic study was performed, using microarrays, in ovarian tissue from females belonging to the selected line and the control line. Our results showed 1357 differential expressed genes and nineteen potential biomarkers associated with prenatal mortality, which could explain differences between litter size in rabbits. Cell death was the most relevant process.This research was supported by MEC (AGL2014-55921-C2-1-P) and Generalitat Valenciana (Prometeo 2009/125).Serna-García, M.; Peiró Barber, RM.; Serna, E.; Santacreu Jerez, MA. (2020). Ovarian transcriptomic analysis reveals differential expression genes associated with cell death process after selection for ovulation rate in rabbits. Animals. 10(10):1-11. https://doi.org/10.3390/ani10101924S1111010Laborda, P., Mocé, M. L., Blasco, A., & Santacreu, M. A. (2012). Selection for ovulation rate in rabbits: Genetic parameters and correlated responses on survival rates1. Journal of Animal Science, 90(2), 439-446. doi:10.2527/jas.2011-4219Laborda, P., Mocé, M. L., Santacreu, M. A., & Blasco, A. (2011). Selection for ovulation rate in rabbits: Genetic parameters, direct response, and correlated response on litter size1. Journal of Animal Science, 89(10), 2981-2987. doi:10.2527/jas.2011-3906Laborda, P., Santacreu, M. A., Blasco, A., & Mocé, M. L. (2012). Selection for ovulation rate in rabbits: Direct and correlated responses estimated with a cryopreserved control population1. Journal of Animal Science, 90(10), 3392-3397. doi:10.2527/jas.2011-4837Cunningham, P. J., England, M. E., Young, L. D., & Zimmerman, D. R. (1979). Selection for Ovulation Rate in Swine: Correlated Response in Litter Size and Weight. Journal of Animal Science, 48(3), 509-516. doi:10.2527/jas1979.483509xRosendo, A., Druet, T., Gogué, J., & Bidanel, J. P. (2007). Direct responses to six generations of selection for ovulation rate or prenatal survival in Large White pigs. Journal of Animal Science, 85(2), 356-364. doi:10.2527/jas.2006-507Johnson, R. K., Zimmerman, D. R., & Kittok, R. J. (1984). Selection for components of reproduction in swine. Livestock Production Science, 11(6), 541-558. doi:10.1016/0301-6226(84)90070-8Rodrigues, P., Limback, D., McGinnis, L. K., Plancha, C. E., & Albertini, D. F. (2008). Oogenesis: Prospects and challenges for the future. Journal of Cellular Physiology, 216(2), 355-365. doi:10.1002/jcp.21473Cartuche, L., Pascual, M., Gómez, E. A., & Blasco, A. (2014). Economic weights in rabbit meat production. World Rabbit Science, 22(3), 165. doi:10.4995/wrs.2014.1747Zuelke, K. A., Jeffay, S. C., Zucker, R. M., & Perreault, S. D. (2002). Glutathione (GSH) concentrations vary with the cell cycle in maturing hamster oocytes, zygotes, and pre-implantation stage embryos. Molecular Reproduction and Development, 64(1), 106-112. doi:10.1002/mrd.10214Tiwari, M., Prasad, S., Tripathi, A., Pandey, A. N., Ali, I., Singh, A. K., … Chaube, S. K. (2015). Apoptosis in mammalian oocytes: a review. Apoptosis, 20(8), 1019-1025. doi:10.1007/s10495-015-1136-yGerritsen, M. E., & Wagner, G. F. (2005). Stanniocalcin: No Longer Just a Fish Tale. Vitamins & Hormones, 105-135. doi:10.1016/s0083-6729(05)70004-2Jepsen, M. R., Kløverpris, S., Bøtkjær, J. A., Wissing, M. L., Andersen, C. Y., & Oxvig, C. (2016). The proteolytic activity of pregnancy-associated plasma protein-A is potentially regulated by stanniocalcin-1 and -2 during human ovarian follicle development. Human Reproduction, 31(4), 866-874. doi:10.1093/humrep/dew013Darcy, C. J., Davis, J. S., Woodberry, T., McNeil, Y. R., Stephens, D. P., Yeo, T. W., & Anstey, N. M. (2011). An Observational Cohort Study of the Kynurenine to Tryptophan Ratio in Sepsis: Association with Impaired Immune and Microvascular Function. PLoS ONE, 6(6), e21185. doi:10.1371/journal.pone.0021185Wirthgen, E., Tuchscherer, M., Otten, W., Domanska, G., Wollenhaupt, K., Tuchscherer, A., & Kanitz, E. (2013). Activation of indoleamine 2,3-dioxygenase by LPS in a porcine model. Innate Immunity, 20(1), 30-39. doi:10.1177/1753425913481252Mohib, K., Guan, Q., Diao, H., Du, C., & Jevnikar, A. M. (2007). Proapoptotic activity of indoleamine 2,3-dioxygenase expressed in renal tubular epithelial cells. American Journal of Physiology-Renal Physiology, 293(3), F801-F812. doi:10.1152/ajprenal.00044.2007Fallarino, F., Grohmann, U., Vacca, C., Bianchi, R., Orabona, C., Spreca, A., … Puccetti, P. (2002). T cell apoptosis by tryptophan catabolism. Cell Death & Differentiation, 9(10), 1069-1077. doi:10.1038/sj.cdd.4401073Wang, Q., Zhang, M., Ding, Y., Wang, Q., Zhang, W., Song, P., & Zou, M.-H. (2014). Activation of NAD(P)H Oxidase by Tryptophan-Derived 3-Hydroxykynurenine Accelerates Endothelial Apoptosis and Dysfunction In Vivo. Circulation Research, 114(3), 480-492. doi:10.1161/circresaha.114.302113Li, F., Zhang, R., Li, S., & Liu, J. (2017). IDO1: An important immunotherapy target in cancer treatment. International Immunopharmacology, 47, 70-77. doi:10.1016/j.intimp.2017.03.024Hill, M., Pereira, V., Chauveau, C., Zagani, R., Remy, S., Tesson, L., … Anegon, I. (2005). Heme oxygenase‐1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3‐dioxygenase. The FASEB Journal, 19(14), 1957-1968. doi:10.1096/fj.05-3875comLieuallen, K. (2001). Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes. Human Molecular Genetics, 10(18), 1867-1871. doi:10.1093/hmg/10.18.1867Pajaniappan, M., Glober, N. K., Kennard, S., Liu, H., Zhao, N., & Lilly, B. (2011). Endothelial cells downregulate apolipoprotein D expression in mural cells through paracrine secretion and Notch signaling. American Journal of Physiology-Heart and Circulatory Physiology, 301(3), H784-H793. doi:10.1152/ajpheart.00116.2011Duffy, D. M., Ko, C., Jo, M., Brannstrom, M., & Curry, T. E. (2018). Ovulation: Parallels With Inflammatory Processes. Endocrine Reviews, 40(2), 369-416. doi:10.1210/er.2018-00075LIU, C., LIU, Y., LIU, Y., WU, D., LUAN, Z., WANG, E., & YU, B. (2013). Ser 15 of WEE1B is a potential PKA phosphorylation target in G2/M transition in one-cell stage mouse embryos. Molecular Medicine Reports, 7(6), 1929-1937. doi:10.3892/mmr.2013.1437Han, S. J., Chen, R., Paronetto, M. P., & Conti, M. (2005). Wee1B Is an Oocyte-Specific Kinase Involved in the Control of Meiotic Arrest in the Mouse. Current Biology, 15(18), 1670-1676. doi:10.1016/j.cub.2005.07.056Nakanishi, M., Ando, H., Watanabe, N., Kitamura, K., Ito, K., Okayama, H., … Sasaki, M. (2000). Identification and characterization of human Wee1B, a new member of the Wee1 family of Cdk-inhibitory kinases. Genes to Cells, 5(10), 839-847. doi:10.1046/j.1365-2443.2000.00367.xOh, J. S., Susor, A., & Conti, M. (2011). Protein Tyrosine Kinase Wee1B Is Essential for Metaphase II Exit in Mouse Oocytes. Science, 332(6028), 462-465. doi:10.1126/science.1199211Castedo, M., Perfettini, J.-L., Roumier, T., & Kroemer, G. (2002). Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death & Differentiation, 9(12), 1287-1293. doi:10.1038/sj.cdd.4401130Golsteyn, R. M. (2005). Cdk1 and Cdk2 complexes (cyclin dependent kinases) in apoptosis: a role beyond the cell cycle. Cancer Letters, 217(2), 129-138. doi:10.1016/j.canlet.2004.08.005Gu, L., Zheng, H., Murray, S. A., Ying, H., & Jim Xiao, Z.-X. (2003). Deregulation of Cdc2 kinase induces caspase-3 activation and apoptosis. Biochemical and Biophysical Research Communications, 302(2), 384-391. doi:10.1016/s0006-291x(03)00189-xSandal, T., Stapnes, C., Kleivdal, H., Hedin, L., & Døskeland, S. O. (2002). A Novel, Extraneuronal Role for Cyclin-dependent Protein Kinase 5 (CDK5). Journal of Biological Chemistry, 277(23), 20783-20793. doi:10.1074/jbc.m112248200Oh, J. S., Susor, A., Schindler, K., Schultz, R. M., & Conti, M. (2013). Cdc25A activity is required for the metaphase II arrest in mouse oocytes. Journal of Cell Science. doi:10.1242/jcs.115592Orciani, M., Trubiani, O., Guarnieri, S., Ferrero, E., & Di Primio, R. (2008). CD38 is constitutively expressed in the nucleus of human hematopoietic cells. Journal of Cellular Biochemistry, 105(3), 905-912. doi:10.1002/jcb.21887Partidá-Sánchez, S., Rivero-Nava, L., Shi, G., & Lund, F. E. (s. f.). CD38: An Ecto-Enzyme at the Crossroads of Innate and Adaptive Immune Responses. Crossroads between Innate and Adaptive Immunity, 171-183. doi:10.1007/978-0-387-34814-8_12Wang, L.-F., Miao, L.-J., Wang, X.-N., Huang, C.-C., Qian, Y.-S., Huang, X., … Xin, H.-B. (2017). CD38 deficiency suppresses adipogenesis and lipogenesis in adipose tissues through activating Sirt1/PPARγ signaling pathway. Journal of Cellular and Molecular Medicine, 22(1), 101-110. doi:10.1111/jcmm.13297Sun, L., Iqbal, J., Zaidi, S., Zhu, L.-L., Zhang, X., Peng, Y., … Zaidi, M. (2006). Structure and functional regulation of the CD38 promoter. Biochemical and Biophysical Research Communications, 341(3), 804-809. doi:10.1016/j.bbrc.2006.01.033Uche, U. U., Piccirillo, A. R., Kataoka, S., Grebinoski, S. J., D’Cruz, L. M., & Kane, L. P. (2018). PIK3IP1/TrIP restricts activation of T cells through inhibition of PI3K/Akt. Journal of Experimental Medicine, 215(12), 3165-3179. doi:10.1084/jem.20172018Chu, K. Y., Li, H., Wada, K., & Johnson, J. D. (2011). Ubiquitin C-terminal hydrolase L1 is required for pancreatic beta cell survival and function in lipotoxic conditions. Diabetologia, 55(1), 128-140. doi:10.1007/s00125-011-2323-1Xiang, T., Li, L., Yin, X., Yuan, C., Tan, C., Su, X., … Tao, Q. (2012). The Ubiquitin Peptidase UCHL1 Induces G0/G1 Cell Cycle Arrest and Apoptosis Through Stabilizing p53 and Is Frequently Silenced in Breast Cancer. PLoS ONE, 7(1), e29783. doi:10.1371/journal.pone.0029783Kabuta, T., Mitsui, T., Takahashi, M., Fujiwara, Y., Kabuta, C., Konya, C., … Wada, K. (2013). Ubiquitin C-terminal Hydrolase L1 (UCH-L1) Acts as a Novel Potentiator of Cyclin-dependent Kinases to Enhance Cell Proliferation Independently of Its Hydrolase Activity. Journal of Biological Chemistry, 288(18), 12615-12626. doi:10.1074/jbc.m112.435701Koyanagi, S., Hamasaki, H., Sekiguchi, S., Hara, K., Ishii, Y., Kyuwa, S., & Yoshikawa, Y. (2012). Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova. REPRODUCTION, 143(3), 271-279. doi:10.1530/rep-11-0128Yao, Y.-W., Shi, Y., Jia, Z.-F., Jiang, Y.-H., Gu, Z., Wang, J., … Sun, Z.-G. (2011). PTOV1 is associated with UCH-L1 and in response to estrogen stimuli during the mouse oocyte development. Histochemistry and Cell Biology, 136(2), 205-215. doi:10.1007/s00418-011-0825-zBoelte, K. C., Gordy, L. E., Joyce, S., Thompson, M. A., Yang, L., & Lin, P. C. (2011). Rgs2 Mediates Pro-Angiogenic Function of Myeloid Derived Suppressor Cells in the Tumor Microenvironment via Upregulation of MCP-1. PLoS ONE, 6(4), e18534. doi:10.1371/journal.pone.0018534Schwameis, M., Blann, A., Mannhalter, C., Jilma, B., & Siller-Matula, J. (2011). Thrombin as a multi-functional enzyme. Thrombosis and Haemostasis, 106(12), 1020-1033. doi:10.1160/th10-11-0711Van Blerkom, J., Antczak, M., & Schrader, R. (1997). The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Human Reproduction, 12(5), 1047-1055. doi:10.1093/humrep/12.5.1047Richards, J. S., Liu, Z., Kawai, T., Tabata, K., Watanabe, H., Suresh, D., … Shimada, M. (2012). Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human. Fertility and Sterility, 98(2), 471-479.e1. doi:10.1016/j.fertnstert.2012.04.050Lagaly, D. V., Aad, P. Y., Grado-Ahuir, J. A., Hulsey, L. B., & Spicer, L. J. (2008). Role of adiponectin in regulating ovarian theca and granulosa cell function. Molecular and Cellular Endocrinology, 284(1-2), 38-45. doi:10.1016/j.mce.2008.01.007Palin, M.-F., Bordignon, V. V., & Murphy, B. D. (2012). Adiponectin and the Control of Female Reproductive Functions. Vitamins & Hormones, 239-287. doi:10.1016/b978-0-12-398313-8.00010-5Wickham, E. P., Tao, T., Nestler, J. E., & McGee, E. A. (2013). Activation of the LH receptor up regulates the type 2 adiponectin receptor in human granulosa cells. Journal of Assisted Reproduction and Genetics, 30(7), 963-968. doi:10.1007/s10815-013-0012-3Chappaz, E., Albornoz, M. S., Campos, D., Che, L., Palin, M.-F., Murphy, B. D., & Bordignon, V. (2008). Adiponectin enhances in vitro development of swine embryos. Domestic Animal Endocrinology, 35(2), 198-207. doi:10.1016/j.domaniend.2008.05.007Elis, S., Coyral-Castel, S., Freret, S., Cognié, J., Desmarchais, A., Fatet, A., … Dupont, J. (2013). Expression of adipokine and lipid metabolism genes in adipose tissue of dairy cows differing in a female fertility quantitative trait locus. Journal of Dairy Science, 96(12), 7591-7602. doi:10.3168/jds.2013-6615Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E., & Lopez-Rios, J. (2008). Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. Journal of Cell Science, 121(6), 737-746. doi:10.1242/jcs.026096Arslanoglu, S., Bertino, E., Tonetto, P., De Nisi, G., Ambruzzi, A. M., Biasini, A., … Moro, G. E. (2010). Guidelines for the establishment and operation of a donor human milk bank. The Journal of Maternal-Fetal & Neonatal Medicine, 23(sup2), 1-20. doi:10.3109/14767058.2010.512414LIN, C.-T., LIN, Y.-T., & KUO, T.-F. (2007). Investigation of mRNA Expression for Secreted Frizzled-Related Protein 2 (sFRP2) in Chick Embryos. Journal of Reproduction and Development, 53(4), 801-810. doi:10.1262/jrd.18081Jaatinen, R., Bondestam, J., Raivio, T., Hildén, K., Dunkel, L., Groome, N., & Ritvos, O. (2002). Activation of the Bone Morphogenetic Protein Signaling Pathway Induces Inhibin βB-Subunit mRNA and Secreted Inhibin B Levels in Cultured Human Granulosa-Luteal Cells. The Journal of Clinical Endocrinology & Metabolism, 87(3), 1254-1261. doi:10.1210/jcem.87.3.8314De Gottardi, A., Dumonceau, J.-M., Bruttin, F., Vonlaufen, A., Morard, I., Spahr, L., … Hadengue, A. (2006). Molecular Cancer, 5(1), 48. doi:10.1186/1476-4598-5-48LUTWAK-MANN, C. (1955). CARBONIC ANHYDRASE IN THE FEMALE REPRODUCTIVE TRACT. OCCURRENCE, DISTRIBUTION AND HORMONAL DEPENDENCE. Journal of Endocrinology, 13(1), 26-38. doi:10.1677/joe.0.013002

    Similar works