The longtime behavior of a number of one- and two-dimensional driven, dissipative, dispersive, many-degree-of-freedom systems is studied. It is shown numerically that the attractors are characterized by strong mode-locking into a small number of (nonlinear) modes. On the basis of the observed profiles, estimates of chaotic attractor dimensions, and projections into nonlinear mode bases, it is argued that the same few modes may (in these extended systems) give a unified picture of spatial pattern selection, low-dimensional chaos, and coexisting coherence and chaos. Analytic approaches to this class of problem are summarized