CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Strain-induced segmentation of magnesian calcite thin films growing on a calcite substrate
Authors
U. Becker
Andrew Putnis
I. Sethmann
J. Wang
Publication date
1 January 2010
Publisher
'American Chemical Society (ACS)'
Doi
Abstract
In crystal growth of mineral species or different compositional members of a solid solution on one another, the degree of lattice mismatch at their interface affects the growth pattern of the precipitating mineral phase. Fast layer-by-layer growth of magnesian calcite on pure calcite (1014) substrates has been observed at Mg2+/Ca2+ ratios of 2-7 using in situ atomic force microscopy. Under solution conditions of calcite saturation states starting from ˜ 33, depending on Mg2+/Ca2+ ratios and carbonate content, bulging in the epitaxial magnesian calcite thin film led to the formation of networks of ridges along the [441], [481], and [421] directions. Eventually, spreading of monolayers stopped at the ridges and formed stationary multilayer steps, resulting in separate and individually growing crystal segments. Molecular dynamics computational modeling suggests that relaxation of strain energy, caused by the interfacial lattice mismatch between pure calcite and the isostructural magnesium-containing phase with smaller lattice constants, leads to a semicoherent interface and disordered linear zones cutting through the thin film. As a consequence, the surface bulges up in a way similar to our laboratory observations. This strain-induced segmentation produces aggregates of aligned microcrystals and increase knowledge of the behavior of strained thin films in general. © 2010 American Chemical Society
Similar works
Full text
Available Versions
LSU Scholarly Repository (Louisiana State Univ.)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repository.lsu.edu:geo_pub...
Last time updated on 26/10/2023
espace@Curtin
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:espace.curtin.edu.au:20.50...
Last time updated on 18/04/2019
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1021%2Fcg100202h
Last time updated on 05/11/2020