Surface Modification of Polypropilene Non-woven Substrates by Padding with Antistatic Agents for Deposition of Polyvinyl Alcohol (PVA) Nanofiber Webs by Electrospinning

Abstract

In recent years, the electrospinning process has become one of the most interesting processes to obtain nanofiber webs with interesting properties for uses in a wide variety of industrial sectors such as filtration, chemical barriers, medical devices, etc., as a consequence of the relatively high surface-to-volume ratio. Among the wide variety of polymers, polyvinyl alcohol (PVA) offers good advantages since it is water-soluble and this fact enables easy processing by electrospinning. There are many variables and parameters to be considered in order to optimize PVA nanofiber webs: some of them are related to the polymer solution, some others are related to the process, and some of them are related to the collector substrate. In this work a study on the effects of two different surface pre-treatments on a nonwoven polypropylene substrate as a collector of PVA nanofiber webs has been carried out. In particular, a chemical treatment with anionic antistatics and a physical treatment with lowpressure plasma have been investigated. The effects of these pre-treatments on morphology of PVA nanofiber webs have been evaluated by scanning electron microscopy. Results show that surface resistivity is one of the main parameters influencing the web formation as well as the nature of the electric charge achieved by the pre-treatment. The plasma treatment promotes changes in surface resistivity but it is not enough for good web deposition. Chemical pre-treatment (padding) with anionic antistatic leads to a decrease in surface resistivity up to values in the 1 × 109– 1 × 1011 Ω which is enough for good nanofiber deposition.This work was supported by the Ministerio de Ciencia y Tecnologia, grant number DPI2007-66849-C02-02.Blanes, M.; Marco, B.; Gisbert, MJ.; Bonet Aracil, MA.; Balart Gimeno, RA. (2010). Surface Modification of Polypropilene Non-woven Substrates by Padding with Antistatic Agents for Deposition of Polyvinyl Alcohol (PVA) Nanofiber Webs by Electrospinning. Textile Research Journal. 80(13):1335-1346. https://doi.org/10.1177/0040517509358801S133513468013Burger, C., Hsiao, B. S., & Chu, B. (2006). NANOFIBROUS MATERIALS AND THEIR APPLICATIONS. Annual Review of Materials Research, 36(1), 333-368. doi:10.1146/annurev.matsci.36.011205.123537Dersch, R., Steinhart, M., Boudriot, U., Greiner, A., & Wendorff, J. H. (2005). Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics. Polymers for Advanced Technologies, 16(2-3), 276-282. doi:10.1002/pat.568Frenot, A., & Chronakis, I. S. (2003). Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science, 8(1), 64-75. doi:10.1016/s1359-0294(03)00004-9GOPAL, R., KAUR, S., MA, Z., CHAN, C., RAMAKRISHNA, S., & MATSUURA, T. (2006). Electrospun nanofibrous filtration membrane. Journal of Membrane Science, 281(1-2), 581-586. doi:10.1016/j.memsci.2006.04.026Qin, X.-H., & Wang, S.-Y. (2006). Filtration properties of electrospinning nanofibers. Journal of Applied Polymer Science, 102(2), 1285-1290. doi:10.1002/app.24361Ren, G., Xu, X., Liu, Q., Cheng, J., Yuan, X., Wu, L., & Wan, Y. (2006). Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. Reactive and Functional Polymers, 66(12), 1559-1564. doi:10.1016/j.reactfunctpolym.2006.05.005Lee, S., & Obendorf, S. K. (2007). Use of Electrospun Nanofiber Web for Protective Textile Materials as Barriers to Liquid Penetration. Textile Research Journal, 77(9), 696-702. doi:10.1177/0040517507080284Heikkilä, P., Sipilä, A., Peltola, M., Harlin, A., & Taipale, A. (2007). Electrospun PA-66 Coating on Textile Surfaces. Textile Research Journal, 77(11), 864-870. doi:10.1177/0040517507078241Boudriot, U., Dersch, R., Greiner, A., & Wendorff, J. H. (2006). Electrospinning Approaches Toward Scaffold Engineering?A Brief Overview. Artificial Organs, 30(10), 785-792. doi:10.1111/j.1525-1594.2006.00301.xButtafoco, L., Kolkman, N. G., Engbers-Buijtenhuijs, P., Poot, A. A., Dijkstra, P. J., Vermes, I., & Feijen, J. (2006). Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials, 27(5), 724-734. doi:10.1016/j.biomaterials.2005.06.024Lee, L. J. (2006). Polymer Nanoengineering for Biomedical Applications. Annals of Biomedical Engineering, 34(1), 75-88. doi:10.1007/s10439-005-9011-6Chew, S. Y., Hufnagel, T. C., Lim, C. T., & Leong, K. W. (2006). Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology, 17(15), 3880-3891. doi:10.1088/0957-4484/17/15/045Huang, Z.-M., He, C.-L., Yang, A., Zhang, Y., Han, X.-J., Yin, J., & Wu, Q. (2006). Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. Journal of Biomedical Materials Research Part A, 77A(1), 169-179. doi:10.1002/jbm.a.30564Kim, H.-W., Lee, H.-H., & Knowles, J. C. (2006). Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. Journal of Biomedical Materials Research Part A, 79A(3), 643-649. doi:10.1002/jbm.a.30866Taepaiboon, P., Rungsardthong, U., & Supaphol, P. (2006). Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology, 17(9), 2317-2329. doi:10.1088/0957-4484/17/9/041Ding, B., Kim, H.-Y., Lee, S.-C., Shao, C.-L., Lee, D.-R., Park, S.-J., … Choi, K.-J. (2002). Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method. Journal of Polymer Science Part B: Polymer Physics, 40(13), 1261-1268. doi:10.1002/polb.10191Cui, W., Li, X., Zhou, S., & Weng, J. (2006). Investigation on process parameters of electrospinning system through orthogonal experimental design. Journal of Applied Polymer Science, 103(5), 3105-3112. doi:10.1002/app.25464Deitzel, J. ., Kleinmeyer, J., Harris, D., & Beck Tan, N. . (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261-272. doi:10.1016/s0032-3861(00)00250-0Lyons, J., Li, C., & Ko, F. (2004). Melt-electrospinning part I: processing parameters and geometric properties. Polymer, 45(22), 7597-7603. doi:10.1016/j.polymer.2004.08.071Theron, S. A., Zussman, E., & Yarin, A. L. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45(6), 2017-2030. doi:10.1016/j.polymer.2004.01.024Kilic, A., Oruc, F., & Demir, A. (2008). Effects of Polarity on Electrospinning Process. Textile Research Journal, 78(6), 532-539. doi:10.1177/0040517507081296Reneker, D. H., & Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216-223. doi:10.1088/0957-4484/7/3/009Lee, J. S., Choi, K. H., Ghim, H. D., Kim, S. S., Chun, D. H., Kim, H. Y., & Lyoo, W. S. (2004). Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Journal of Applied Polymer Science, 93(4), 1638-1646. doi:10.1002/app.20602Mit-uppatham, C., Nithitanakul, M., & Supaphol, P. (2004). Effects of Solution Concentration, Emitting Electrode Polarity, Solvent Type, and Salt Addition on Electrospun Polyamide-6 Fibers: A Preliminary Report. Macromolecular Symposia, 216(1), 293-300. doi:10.1002/masy.200451227Kim, S. J., Lee, C. K., & Kim, S. I. (2005). Effect of ionic salts on the processing of poly(2-acrylamido-2-methyl-1-propane sulfonic acid) nanofibers. Journal of Applied Polymer Science, 96(4), 1388-1393. doi:10.1002/app.21567ZHANG, C., YUAN, X., WU, L., & SHENG, J. (2006). PROPERTIES OF ULTRAFINE FIBROUS POLY(VINYL ALCOHOL) MEMBRANES BY ELECTROSPINNING. Acta Polymerica Sinica, 006(2), 294-297. doi:10.3724/sp.j.1105.2006.00294Supaphol, P., & Chuangchote, S. (2008). On the electrospinning of poly(vinyl alcohol) nanofiber mats: A revisit. Journal of Applied Polymer Science, 108(2), 969-978. doi:10.1002/app.27664Jones, R. N. (1962). THE EFFECTS OF CHAIN LENGTH ON THE INFRARED SPECTRA OF FATTY ACIDS AND METHYL ESTERS. Canadian Journal of Chemistry, 40(2), 321-333. doi:10.1139/v62-050Yao, L., Haas, T. W., Guiseppi-Elie, A., Bowlin, G. L., Simpson, D. G., & Wnek, G. E. (2003). Electrospinning and Stabilization of Fully Hydrolyzed Poly(Vinyl Alcohol) Fibers. Chemistry of Materials, 15(9), 1860-1864. doi:10.1021/cm0210795Wei, Q. F., Gao, W. D., Hou, D. Y., & Wang, X. Q. (2005). Surface modification of polymer nanofibres by plasma treatment. Applied Surface Science, 245(1-4), 16-20. doi:10.1016/j.apsusc.2004.10.013Garcia, D., Sanchez, L., Fenollar, O., Lopez, R., & Balart, R. (2008). Modification of polypropylene surface by CH4–O2 low-pressure plasma to improve wettability. Journal of Materials Science, 43(10), 3466-3473. doi:10.1007/s10853-007-2322-2López, R., Sanchis, R., García, D., Fenollar, O., & Balart, R. (2009). Surface characterization of hydrophilic coating obtained by low-pressure CH4O2plasma treatment on a polypropylene film. Journal of Applied Polymer Science, 111(6), 2992-2997. doi:10.1002/app.29324Tsai, P. P., Schreuder-Gibson, H., & Gibson, P. (2002). Different electrostatic methods for making electret filters. Journal of Electrostatics, 54(3-4), 333-341. doi:10.1016/s0304-3886(01)00160-

    Similar works

    Full text

    thumbnail-image

    Available Versions