Real-time massive convolution for audio applications on GPU

Abstract

[EN] Massive convolution is the basic operation in multichannel acoustic signal processing. This field has experienced a major development in recent years. One reason for this has been the increase in the number of sound sources used in playback applications available to users. Another reason is the growing need to incorporate new effects and to improve the hearing experience. Massive convolution requires high computing capacity. GPUs offer the possibility of parallelizing these operations. This allows us to obtain the processing result in much shorter time and to free up CPU resources. One important aspect lies in the possibility of overlapping the transfer of data from CPU to GPU and vice versa with the computation, in order to carry out real-time applications. Thus, a synthesis of 3D sound scenes could be achieved with only a peer-to-peer music streaming environment using a simple GPU in your computer, while the CPU in the computer is being used for other tasks. Nowadays, these effects are obtained in theaters or funfairs at a very high cost, requiring a large quantity of resources. Thus, our work focuses on two mains points: to describe an efficient massive convolution implementation and to incorporate this task to real-time multichannel-sound applications. © 2011 Springer Science+Business Media, LLC.This work was partially supported by the Spanish Ministerio de Ciencia e Innovacion (Projects TIN2008-06570-C04-02 and TEC2009-13741), Universidad Politecnica de Valencia through PAID-05-09 and Generalitat Valenciana through project PROMETEO/2009/2013Belloch Rodríguez, JA.; Gonzalez, A.; Martínez Zaldívar, FJ.; Vidal Maciá, AM. (2011). Real-time massive convolution for audio applications on GPU. Journal of Supercomputing. 58(3):449-457. https://doi.org/10.1007/s11227-011-0610-8S449457583Spors S, Rabenstein R, Herbordt W (2007) Active listening room compensation for massive multichannel sound reproduction system using wave-domain adaptive filtering. J Acoust Soc Am 122:354–369Huang Y, Benesty J, Chen J (2008) Generalized crosstalk cancellation and equalization using multiple loudspeakers for 3D sound reproduction at the ears of multiple listeners. In: IEEE int conference on acoustics, speech and signal processing, Las Vegas, USA, pp 405–408Cowan B, Kapralos B (2008) Spatial sound for video games and virtual environments utilizing real-time GPU-based convolution. In: Proceedings of the ACM FuturePlay 2008 international conference on the future of game design and technology, Toronto, Ontario, Canada, November 3–5Belloch JA, Vidal AM, Martinez-Zaldivar FJ, Gonzalez A (2010) Multichannel acoustic signal processing on GPU. In: Proceedings of the 10th international conference on computational and mathematical methods in science and engineering, vol 1. Almeria, Spain, June 26–30, pp 181–187Cowan B, Kapralos B (2009) GPU-based one-dimensional convolution for real-time spatial sound generation. Sch J 3(5)Soliman SS, Mandyam DS, Srinath MD (1997) Continuous and discrete signals and systems. Prentice Hall, New YorkOppenheim AV, Willsky AS, Hamid Nawab S (1996) Signals and systems. Prentice Hall, New YorkopenGL: http://www.opengl.org/MKL library: http://software.intel.com/en-us/intel-mkl/MKL library: http://software.intel.com/en-us/intel-ipp/CUFFT library: http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/CUFFT_Library_3.1.pdfCUDA Toolkit 3.1: http://developer.nvidia.com/object/cuda_3_1_downloads.htmlCUDA Toolkit 3.2: http://developer.nvidia.com/object/cuda_3_1_downloads.htmlDatasheet of AC’97 SoundMAX Codec: http://www.xilinx.com/products/boards/ml505/datasheets/87560554AD1981B_c.pd

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020