Application of Compromise Programming to a semi-detached housing development in order to balance economic and environmental criteria

Abstract

This is a post-peer-review, pre-copyedit version of an article published in Journal of the Operational Research Society. The definitive publisher-authenticated version: Ruá Aguilar, MJ.; Guadalajara Olmeda, MN. (2012). Application of Compromise Programming to a semi-detached housing development in order to balance economic and environmental criteria. Journal of the Operational Research Society. 64(3):459-468, is available online at: http://www.palgrave-journals.com/jors/journal/v64/n3/full/jors201276a.html.European Energy Performance of Buildings Directives DE promote energy efficiency in buildings. Under these Directives, the European Union States must apply minimum requirements regarding the energy performance of buildings and ensure the certification of their energy performance. The Directives set only the basic principles and requirements, leaving a significant amount of room for the Member States to establish their specific mechanisms, numeric requirements and ways to implement them, taking into account local conditions. With respect to the Spanish case, the search for buildings that are more energy efficient results in a conflict between users¿ economic objectives and society's environmental objectives. In this paper, Compromise Programming is applied to help in the decision-making process. An appropriate distribution of types of dwellings, according to their energy performance and to the climatic zone considered in Spain, will be suggested. Results provide a compromise solution between both objectives.Ruá Aguilar, MJ.; Guadalajara Olmeda, MN. (2012). Application of Compromise Programming to a semi-detached housing development in order to balance economic and environmental criteria. Journal of the Operational Research Society. 64(3):459-468. doi:10.1057/jors.2012.76S459468643Andaloro, A. P. F., Salomone, R., Ioppolo, G., & Andaloro, L. (2010). Energy certification of buildings: A comparative analysis of progress towards implementation in European countries. Energy Policy, 38(10), 5840-5866. doi:10.1016/j.enpol.2010.05.039André, F. J., Cardenete, M. A., & Romero, C. (2008). Using compromise programming for macroeconomic policy making in a general equilibrium framework: theory and application to the Spanish economy. Journal of the Operational Research Society, 59(7), 875-883. doi:10.1057/palgrave.jors.2602415Baja, S., Chapman, D. M., & Dragovich, D. (2006). Spatial based compromise programming for multiple criteria decision making in land use planning. Environmental Modeling & Assessment, 12(3), 171-184. doi:10.1007/s10666-006-9059-1Ballestero, E., & Romero, C. (1991). A theorem connecting utility function optimization and compromise programming. Operations Research Letters, 10(7), 421-427. doi:10.1016/0167-6377(91)90045-qBallestero, E., & Romero, C. (1993). Weighting in compromise programming: A theorem on shadow prices. Operations Research Letters, 13(5), 325-329. doi:10.1016/0167-6377(93)90055-lDavies, H., & Wyatt, D. (2004). Appropriate use of the ISO 15686-1 factor method for durability and service life prediction. Building Research & Information, 32(6), 552-553. doi:10.1080/0961321042000291938Diakaki, C., Grigoroudis, E., Kabelis, N., Kolokotsa, D., Kalaitzakis, K., & Stavrakakis, G. (2010). A multi-objective decision model for the improvement of energy efficiency in buildings. Energy, 35(12), 5483-5496. doi:10.1016/j.energy.2010.05.012Dı́az-Balteiro, L., & Romero, C. (2003). Forest management optimisation models when carbon captured is considered: a goal programming approach. Forest Ecology and Management, 174(1-3), 447-457. doi:10.1016/s0378-1127(02)00075-0Diaz-Balteiro, L., & Rodriguez, L. C. E. (2006). Optimal rotations on Eucalyptus plantations including carbon sequestration—A comparison of results in Brazil and Spain. Forest Ecology and Management, 229(1-3), 247-258. doi:10.1016/j.foreco.2006.04.005Fattahi, P., & Fayyaz, S. (2009). A Compromise Programming Model to Integrated Urban Water Management. Water Resources Management, 24(6), 1211-1227. doi:10.1007/s11269-009-9492-4Hamdy, M., Hasan, A., & Siren, K. (2011). Applying a multi-objective optimization approach for Design of low-emission cost-effective dwellings. Building and Environment, 46(1), 109-123. doi:10.1016/j.buildenv.2010.07.006Johnstone, I. M. (2001). Energy and mass flows of housing: a model and example. Building and Environment, 36(1), 27-41. doi:10.1016/s0360-1323(99)00065-7Johnstone, I. M. (2001). Energy and mass flows of housing: estimating mortality. Building and Environment, 36(1), 43-51. doi:10.1016/s0360-1323(99)00066-9Linares, P., & Romero, C. (2000). A multiple criteria decision making approach for electricity planning in Spain: economic versus environmental objectives. Journal of the Operational Research Society, 51(6), 736-743. doi:10.1057/palgrave.jors.2600944Rey, F. J., Velasco, E., & Varela, F. (2007). Building Energy Analysis (BEA): A methodology to assess building energy labelling. Energy and Buildings, 39(6), 709-716. doi:10.1016/j.enbuild.2006.07.009Rudbeck, C. (2002). Service life of building envelope components: making it operational in economical assessment. Construction and Building Materials, 16(2), 83-89. doi:10.1016/s0950-0618(02)00003-xSan-José, J. T., Losada, R., Cuadrado, J., & Garrucho, I. (2007). Approach to the quantification of the sustainable value in industrial buildings. Building and Environment, 42(11), 3916-3923. doi:10.1016/j.buildenv.2006.11.013Yu, P. L. (1973). A Class of Solutions for Group Decision Problems. Management Science, 19(8), 936-946. doi:10.1287/mnsc.19.8.936Zelany, M. (1974). A concept of compromise solutions and the method of the displaced ideal. Computers & Operations Research, 1(3-4), 479-496. doi:10.1016/0305-0548(74)90064-

    Similar works