Session B1: Lessons Learned from Tropical Storm Irene 2.0: How Flood Resiliency Benefits of Stream Simulation Designs Are Changing Policy within the U.S.

Abstract

Abstract Stream simulation design is a geomorphic, engineering, and ecologically-based approach to designing road-stream crossings that creates a natural and dynamic channel through the crossing structure similar in dimensions and characteristics to the adjacent, natural channel, allowing for unimpeded passage of aquatic organisms, debris, and water during various flow conditions, including floods. A retrospective case study of the survival and failure of road-stream crossings was conducted in the upper White River watershed and the Green Mountain National Forest in Vermont following record flooding from Tropical Storm Irene in August 2011. Damage was largely avoided at two road-stream crossings where stream simulation design was implemented, and extensive at multiple road-stream crossings constructed using traditional undersized, hydraulic designs. Cost analyses suggest that relatively modest increases in initial investment to implement stream simulation designs yield substantial societal and economic benefits. Numerous other examples across the country of stream simulation designs surviving large flood events underscore these benefits. Four years after the historic Irene flood event, policy changes at state and federal levels across the U.S. suggest that the flood resiliency of culverts is gaining momentum as a policy driver amid growing public sensitivity to climate change risks and the importance of restoring ecological connectivity and protecting investments in transportation infrastructure

    Similar works