Reconstructing Geometric Structures from Combinatorial and Metric Information

Abstract

In this dissertation, we address three reconstruction problems. First, we address the problem of reconstructing a Delaunay triangulation from a maximal planar graph. A maximal planar graph G is Delaunay realizable if there exists a realization of G as a Delaunay triangulation on the plane. Several classes of graphs with particular graph-theoretic properties are known to be Delaunay realizable. One such class of graphs is outerplanar graph. In this dissertation, we present a new proof that an outerplanar graph is Delaunay realizable. Given a convex polyhedron P and a point s on the surface (the source), the ridge tree or cut locus is a collection of points with multiple shortest paths from s on the surface of P. If we compute the shortest paths from s to all polyhedral vertices of P and cut the surface along these paths, we obtain a planar polygon called the shortest path star (sp-star) unfolding. It is known that for any convex polyhedron and a source point, the ridge tree is contained in the sp-star unfolding polygon [8]. Given a combinatorial structure of a ridge tree, we show how to construct the ridge tree and the sp-star unfolding in which it lies. In this process, we address several problems concerning the existence of sp-star unfoldings on specified source point sets. Finally, we introduce and study a new variant of the sp-star unfolding called (geodesic) star unfolding. In this unfolding, we cut the surface of the convex polyhedron along a set of non-crossing geodesics (not-necessarily the shortest). We study its properties and address its realization problem. Finally, we consider the following problem: given a geodesic star unfolding of some convex polyhedron and a source point, how can we derive the sp-star unfolding of the same polyhedron and the source point? We introduce a new algorithmic operation and perform experiments using that operation on a large number of geodesic star unfolding polygons. Experimental data provides strong evidence that the successive applications of this operation on geodesic star unfoldings will lead us to the sp-star unfolding

    Similar works