Support Vector Regression Machine Learning Tool to Predict GNSS Clock Corrections in Real-Time PPP Technique

Abstract

[EN] Real-time Precise Point Positioning (PPP) can provide the Global Navigation Satellites Systems (GNSS) users with the ability to determine their position accurately using only one GNSS receiver. The PPP solution does not rely on a base receiver or local GNSS network. However, for establishing a real-time PPP solution, the GNSS users are required to receive the Real-Time Service (RTS) message over the Network Transported of RTCM via Internet Protocol (NTRIP). The RTS message includes orbital, code biases, and clock corrections. GNSS users receive those corrections produced by the analysis center with some latency, which degraded the quality of coordinates obtained through realtime PPP. In this research, we investigate the Support Vector Machine (SVR) machine learning tool to overcome the latency for clock corrections in the IGS03 product. Three days of continuous GNSS observations at BREST permanent station in France were selected as a case study. BNC software was used to generate clock corrections files. Taking as reference the clock correction values without latency. The SVR solution shows a reduction in the standard deviation and range with about 30% and 20%, respectively, in comparison to the latency solution for all satellites except those satellites in GLONASS M block.Qafisheh, MWA.; Martín Furones, ÁE.; Torres-Sospedra, J. (2020). Support Vector Regression Machine Learning Tool to Predict GNSS Clock Corrections in Real-Time PPP Technique. CEUR Workshop Proceedings. 1-8. http://hdl.handle.net/10251/178545S1

    Similar works

    Full text

    thumbnail-image

    Available Versions