Innovative technologies, certification and assessment tools for a sustainable building heritage

Abstract

[EN] It’s clear that good results in the field of environmental sustainability can be obtained by energy efficiency policies for buildings - mostly undertaken or in itinere - built for more than 50% before the disregarded law 373/76 that provided, in the period of the European oil crisis, constraints for design, installation, operation and maintenance of heating systems and requirements for thermal insulation of buildings to contain consumption. On the other hand, it is less clear the part of buildings subject to conservation (in accordance with the Legislative Decree 42/2004 or former regulations on the subject) or listed buildings ope legis (art. 12 of italian legislative Decree 42/2004, asset belonging to the State, regions, public territorial authorities, as well as any other public body and institute and private non-profit legal entities and which are the work of an author who is no longer alive and whose execution dates back to more than seventy years) for which it would not be possible to apply the limitations of the decrees 192/2005 and 311/2006, which relieve the buildings “in which compliance with the requirements would entail an unacceptable alteration of their nature or appearance, with particular reference to historical or artistic features” of the energy efficiency obligations. In this paper we want to justify and illustrate some choices made by international research institutes regarding the difficulty in reconciling the new requests of sustainability related to the need to reduce consumption (especially from fossil fuels) with those of the historical value of the buildings subject to intervention, presenting evaluation criteria that can provide an objective method for quantifying the compatibility between new and existing, criteria that – in order to have predictive capacity and therefore be able to guide choices ex ante and not measure them ex post - use digital design tools (BIM, GIS, etc).[IT] E' evidente che buoni risultati nel campo della sostenibilità ambientale si possono ottenere da politiche di efficienza energetica per gli edifici - per lo più realizzati o in itinere - costruiti per oltre il 50% prima della disattesa legge 373/76 che prevedeva, nel periodo del petrolio europeo crisi, vincoli per la progettazione, installazione, esercizio e manutenzione degli impianti termici e requisiti per l'isolamento termico degli edifici per il contenimento dei consumi.Meno chiara è invece la parte di fabbricato oggetto di conservazione (ai sensi del D.Lgs. 42/2004 o previgenti normative in materia) o di immobili vincolati ope legis (art. 12 D.Lgs. 42/2004, asset appartenenti allo Stato, alle regioni, agli enti pubblici territoriali, nonché ad ogni altro ente ed istituto pubblico e soggetti giuridici privati senza scopo di lucro e che siano opera di autore non più in vita e la cui esecuzione risalga a più di settant'anni ), per i quali non sarebbe possibile applicare le limitazioni dei decreti 192/2005 e 311/2006, che esonerano gli edifici "il cui rispetto dei requisiti comporterebbe un'alterazione inaccettabile della loro natura o aspetto, con particolare riferimento ai o caratteristiche artistiche"degli obblighi di efficienza energetica.In questo lavoro si vogliono giustificare e illustrare alcune scelte fatte da istituti di ricerca internazionali in merito alla difficoltà di conciliare le nuove richieste di sostenibilità legate alla necessità di ridurre i consumi (soprattutto da combustibili fossili) con quelle del valore storico degli edifici oggetto di intervento , presentando criteri di valutazione che possano fornire un metodo oggettivo per quantificare la compatibilità tra nuovo ed esistente, criteri che – per avere capacità predittiva e quindi poter guidare le scelte ex ante e non misurarle ex post – utilizzino strumenti di progettazione digitale (BIM , GIS, ecc.).Minutoli, F. (2021). Innovative technologies, certification and assessment tools for a sustainable building heritage. VITRUVIO - International Journal of Architectural Technology and Sustainability. 6(2):102-115. https://doi.org/10.4995/vitruvio-ijats.2021.16530OJS10211562AA.VV. 2017. Sistema di verifica GBC Historic Building per il restauro e la riqualificazione degli edifici storici, 45-46.Chatzipanagi, A., & Frontini F. (2012.) Building Integrated Photovoltaics - Thermal Aspects: Low Energy House for Testing BiPV Systems, in proceedings of the BRENET Status-Seminar «Forschen für den Bau im Kontext von Energie und Umwelt», ETH-Zürich.Balocco, C., & Marmonti, E. 2013. 'Optimal and sustainable plant refurbishment in historical buildings:a study of anancient monastery converted into a showroom in Florence', Sustainability, 5 (4), 1700-1724. https://doi.org/10.3390/su5041700Boarin, P., Guglielmino, D., Pisello, A.L., & Cotana, F. 2014. Sustainability assessment of historic buildings: lesson learnt from an Italian case study through LEED® rating system, Energy Procedia, 61, 1029-1032. https://doi.org/10.1016/j.egypro.2014.11.1017Cabeza, L.F., De Gracia A., & Pisello A.L. 2018. 'Integration of renewable technologies in historical and heritage buildings: a review', Energy&Buildings, 177, 96-111. https://doi.org/10.1016/j.enbuild.2018.07.058Castaldo, V.L., Pisello, A.L., Boarin, P., Petrozzi, A., & Cotana, F. 2017. 'The experience of international sustainability protocols for retrofitting historical buildings in Italy', Buildings, 7, 52. https://doi.org/10.3390/buildings7020052Chen, H., Chiang, C., Shu, C., & Lee, S. 2012. 'Self-power consumption research with the thermal effects and optical properties of the HCRIBIPV window system', Journal of Electronic Science and Technology, 10, 29-36. https://doi.org/10.3969/j.issn.1674-862X.2012.01.005Delponte, E., Marchi, F., Frontini, F., Polo, C., Fath, K., & Batey, M. 2015. BIPV in EU28, from niche to mass market: an assessment of current projects and the potential for growth through product innovation, in Proceedings of the 31st European photovoltaic solar energy conference and exhibition, 3046-3050. https://doi.org/10.4229/EUPVSEC20152015-7DO.15.4Dessì, V. M. 2013. Methods and tools to evaluate visual impact of solar technologies in urban environment, Proceedings of CISBAT, Lausanne, 679-688.Farkas, K., Maturi, L., Scognamiglio, A., Frontini, F., Cristina, M., Probst, M., et al. 2015. Designing photovoltaic systems for architectural integration, criteria and guidelines for product and system developers, Report T.41.A.3/2: IEA SHC Task 41 Solar Energy and Architecture.Florio, P., Munari Probst, M.C., Schüler, A., Roecker, C., & Scartezzini, J.L. 2018. 'Assessing visibility in multi-scale urban planning: a contribution to a method enhancing social acceptability of solar energy in cities', Solar Energy, 173, pp. 97-109. https://doi.org/10.1016/j.solener.2018.07.059Giombini, M. & Pinchi, E.M. 2015. 'Energy functional retrofitting of historic residential buildings: the case study of the historic center of Perugia', Energy Procedia, 82, 1009-1016. https://doi.org/10.1016/j.egypro.2015.11.859Kandt, A., Hotchkiss, E., Walker, A., Buddenborg, J., & Lindberg, J. 2011. Implementing solar PV projects on historic buildings and in historic districts, Technical Report, NREL/TP-7A40-51297. https://doi.org/10.2172/1026574Kooles, K., Frey, P., & Miller, J. 2012. Installing solar panels on historic buildings. A Survey of the Regulatory Environment, Relatório Técnico do Departamento de Energia dos Estados Unidos-US DOE, North Carolina Solar Center e National Trust for Historic Preservation, US Department of Energy Solar Energy Technologies Office, 52.Li, R., Dai, Y., & Wang, R. 2015. 'Experimental and theoretical analysis on thermal performance of solar thermal curtain wall in building envelope', Energy and Buildings, 87, 324-334. https://doi.org/10.1016/j.enbuild.2014.11.029Munari Probst, M. C. & Roecker, C. 2011. Urban acceptability of building integrated solar systems: Leso QSV approach, in Proceedings ISES 2011, Kassel, Germany. https://doi.org/10.18086/SWC.2011.27.10Munari Probst, M. C. & Roecker, C. 2015. Solar Energy promotion and Urban Context protection: LESO-QSV (Quality, Site, Visibility) method, in Proceedings PLEA 2015, Bologna.Munari Probst, M. C. & Roecker, C. 2019. 'Criteria and policies to master the visual impact of solar systems in urban environments: The LESO-QSV method', Solar Energy, 184, pp. 672-687. https://doi.org/10.1016/j.solener.2019.03.031Peng, J., Lu, L., Yang, H., & Han, J. 2013. 'Investigation on the annual thermal performance of a photovoltaic wall mounted on a multilayer façade', Applied Energy, 112, 646-656. https://doi.org/10.1016/j.apenergy.2012.12.026Pisello, A.L., Petrozzi, A., Castaldo, V.L., & Cotana, F. 2016. 'On an innovative integrated technique for energy refurbishment of historical buildings: thermal-energy, economic and environmental analysis of a case study', Appl.Energy, 162, 1313-1322. https://doi.org/10.1016/J.APENERGY.2015.05.061Sibley, M. 2006. The Historic hammāms of Damascus and Fez: lessons of sustainability and future developments, in 23rd conference on passive and low energy architecture (PLEA), Geneva; Switzerland, 181-186.Sibley, M., & Sibley, M. 2013. 'Hybrid green technologies for retrofitting heritage buildings in North African medinas: combining vernacular and high-tech solutions for an innovative solar powered lighting system for hammam buildings', Energy Procedia, 42, 718-725. https://doi.org/10.1016/j.egypro.2013.11.074Wang, M., Peng, J., Li, N., Lu, L., Ma, T., & Yang, H. 2016. 'Assessment of energy performance of semi-transparent PV insulating glass units using a validated simulation model', Energy, 112 (Supplement C), 538-548. https://doi.org/10.1016/j.energy.2016.06.120Zhang, W., Lu, L., & Peng, J., Song, A. 2016. 'Comparison of the overall energy performance of semi-transparent photovoltaic windows and common energy-efficient windows in Hong Kong', Energy and Buildings, 128 (Supplement C), 511-518. https://doi.org/10.1016/j.enbuild.2016.07.016Zhang, W., Lu, L., Chen, X. 2017. 'Performance evaluation of Vacuum Photovoltaic Insulated glass unit', Energy Procedia, 105 (Supplement C), 322-326. https://doi.org/10.1016/j.egypro.2017.03.321Zhou, Y. P., Wu, J. Y., Wang, R. Z., Shiochi, S., & Li, Y. M. 2008. 'Simulation and experimental validation of the variable-refrigerant-volume (VRV) air-conditioning system in EnergyPlus', Energy and Buildings, 40(6), 1041-1047. https://doi.org/10.1016/J.ENBUILD.2007.04.02

    Similar works

    Full text

    thumbnail-image

    Available Versions