Caracterização, modelação e compensação de efeitos de memória lenta em amplificadores de potência baseados em GAN HEMTS

Abstract

Gallium nitride (GaN) high-electron-mobility transistors (HEMTs) have emerged as the most compelling technology for the transmission of highpower radio-frequency (RF) signals for cellular mobile communications and radar applications. However, despite their remarkable power capabilities, the deployment of GaN HEMT-based RF power amplifiers (PAs) in the mobile communications infrastructure is often ruled out in favor of alternative siliconbased technologies. One of the main reasons for this is the pervasiveness of nonlinear long-term memory effects in GaN HEMT technology caused by thermal and charge-trapping phenomena. While these effects can be compensated for using sophisticated digital predistortion algorithms, their implementation and model-extraction complexity—as well as the power necessary for their real-time execution—make them unsuitable for modern small cells and large-scale multiple-input multiple-output transceivers, where the power necessary for the linearization of each amplification element is of great concern. In order to address these issues and further the deployment of high-powerdensity high-efficiency GaN HEMT-based RF PAs in next-generation communications and radar applications, in this thesis we propose novel methods for the characterization, modeling, and compensation of long-term memory effects in GaN HEMT-based RF PAs. More specifically, we propose a method for the characterization of the dynamic self-biasing behavior of GaN HEMTbased RF PAs; multiple behavioral models of charge trapping and their implementation as analog electronic circuits for the accurate real-time prediction of the dynamic variation of the threshold voltage of GaN HEMTs; a method for the compensation of the pulse-to-pulse instability of GaN HEMT-based RF PAs for radar applications; and a hybrid analog/digital scheme for the linearization of GaN HEMT-based RF PAs for next-generation communications applications.Os transístores de alta mobilidade eletrónica de nitreto de gálio (GaN HEMTs) são considerados a tecnologia mais atrativa para a transmissão de sinais de radiofrequência de alta potência para comunicações móveis celulares e aplicações de radar. No entanto, apesar das suas notáveis capacidades de transmissão de potência, a utilização de amplificadores de potência (PAs) baseados em GaN HEMTs é frequentemente desconsiderada em favor de tecnologias alternativas baseadas em transístores de silício. Uma das principais razões disto acontecer é a existência pervasiva na tecnologia GaN HEMT de efeitos de memória lenta causados por fenómenos térmicos e de captura eletrónica. Apesar destes efeitos poderem ser compensados através de algoritmos sofisticados de predistorção digital, estes algoritmos não são adequados para transmissores modernos de células pequenas e interfaces massivas de múltipla entrada e múltipla saída devido à sua complexidade de implementação e extração de modelo, assim como a elevada potência necessária para a sua execução em tempo real. De forma a promover a utilização de PAs de alta densidade de potência e elevada eficiência baseados em GaN HEMTs em aplicações de comunicação e radar de nova geração, nesta tese propomos novos métodos de caracterização, modelação, e compensação de efeitos de memória lenta em PAs baseados em GaN HEMTs. Mais especificamente, nesta tese propomos um método de caracterização do comportamento dinâmico de autopolarização de PAs baseados em GaN HEMTs; vários modelos comportamentais de fenómenos de captura eletrónica e a sua implementação como circuitos eletrónicos analógicos para a previsão em tempo real da variação dinâmica da tensão de limiar de condução de GaN HEMTs; um método de compensação da instabilidade entre pulsos de PAs baseados em GaN HEMTs para aplicações de radar; e um esquema híbrido analógico/digital de linearização de PAs baseados em GaN HEMTs para comunicações de nova geração.Programa Doutoral em Telecomunicaçõe

    Similar works