Desenvolvimento em VHDL da camada física de um transmissor 4G

Abstract

The LTE and LTE-Advanced technologies are standards to the fourth mobile generation, or 4G. The planned successor of this mobile generation is 5G, which will be based on 5G-New Radio (5G-NR) standard. The 5G technology is on an initial phase of deployment. One of its features that are essential in this initial phase is the support for 4G communications, because many of the mobile devices currently in use do not have support for 5G communications. This support is made possible if there is an implementation where 4G and 5G networks both coexist with each other. In the future, with the increasing usage of mobile devices with 5G support, there will be a gradual migration of 4G networks to 5G, releasing frequency spectrums currently reserved for 4G so that those can be occupied by 5G. The data transmissions in 4G require quite a lot of the processing capacity of all systems within the mobile network. For 5G, the data transmissions, in terms of traffic volume and speed, are larger than 4G transmissions, requiring new systems to be implemented, to allow the processing of larger quantities of data. Implementation in hardware of a 4G Uplink transmission chain, at the physical layer level PHY-Low, will allow the optimization of certain processes that a CPU could handle, reducing CPU usage and time spent on processing. The use of FPGAs makes this possible, as FPGAs can perform parallel tasks simultaneously and perform digital signal processing. The purpose of this dissertation is the modelling of a 4G LTE Uplink transmitter, at the physical layer level. Then, synthesizable VHDL code is generated from the modeled system, which can be eventually implemented in FPGAs. The modelling of the system is made in Simulink, a tool inside the MATLAB software, which allows for modelling, simulating and analyzing systems in a graphic environment and has applications in control systems and digital signal processing. The VHDL code is generated from HDL Coder, another tool in MATLAB software, generating synthesizable Verilog and VHDL code, from the MATLAB functions and Simulink models. The results obtained of processed data from the system are analyzed and validated, comparing the reference data generated from Wireless Waveform Generator toolbox in MATLAB.A tecnologia LTE e LTE-Advanced são standards da quarta geração de comunicações moveis atuais, ou 4G. Futuramente, o 5G marca a próxima geração de comunicações moveis, segundo o standard 5G-New Radio (5GNR). A tecnologia 5G encontra-se numa fase inicial de implementação, sendo que nessa fase uma das suas características fundamentais é o suporte para comunicações 4G, pois muitos dos dispositivos moveis usados atualmente não possuem suporte para comunicações 5G. Este suporte para 4G é tornado possível, se for feita uma implementação onde as redes 4G e 5G se encontrem em coexistência. No futuro, com o aumento do uso de dispositivos moveis com suporte para 5G, haverá uma migração gradual de redes 4G para 5G, libertando os espectros de frequências reservados atualmente para o 4G para serem ocupados pelo 5G. As transmissões de dados no 4G exigem bastante da capacidade de processamento de todos os sistemas da rede movel. Para o 5G, as transmissões de dados tem volumes de tráfego e velocidades maiores do que as transmissões de dados 4G, fazendo com que novos sistemas tenham de ser implementados para poder processar maiores quantidades de dados. A implementação em hardware da cadeia de transmissão 4G Uplink, ao nível da camada física PHY-Low, permitirá a otimização de certos processos que um CPU poderia lidar, diminuindo o uso do CPU e o tempo gasto em processamento. O uso de FPGAs torna isto possível, tendo em conta que podem realizar tarefas em paralelo, em modo simultâneo, e fazer processamento digital de sinal. O objetivo desta dissertação assenta na modelação de um transmissor 4G LTE Uplink, ao nível da camada física. Depois, é gerado código VHDL sintetizável a partir do sistema modelado, que eventualmente será implementada em FPGAs. A modelação do sistema é feito em Simulink, uma ferramenta no software do MATLAB, que permite modelar, simular e analisar sistemas num ambiente gráfico e tem aplicações para sistemas de controlo e processamento digital de sinal. O código VHDL é gerado a partir do HDL Coder, uma outra ferramenta no software do MATLAB, que gera Verilog e VHDL sintetizáveis, a partir de funções MATLAB e de modelos Simulink. Os resultados obtidos dos dados processados pelo sistema são analisados e validados, comparando com os dados de referência obtidos a partir da toolbox Wireless Waveform Generator do MATLAB.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Similar works