The integrability (solvability via an associated single-valued linear
problem) of a differential equation is closely related to the singularity
structure of its solutions. In particular, there is strong evidence that all
integrable equations have the Painlev\'e property, that is, all solutions are
single-valued around all movable singularities. In this expository article, we
review methods for analysing such singularity structure. In particular, we
describe well known techniques of nonlinear regular-singular-type analysis,
i.e. the Painlev\'e tests for ordinary and partial differential equations. Then
we discuss methods of obtaining sufficiency conditions for the Painlev\'e
property. Recently, extensions of \textit{irregular} singularity analysis to
nonlinear equations have been achieved. Also, new asymptotic limits of
differential equations preserving the Painlev\'e property have been found. We
discuss these also.Comment: 40 pages in LaTeX2e. To appear in the Proceedings of the CIMPA Summer
School on "Nonlinear Systems," Pondicherry, India, January 1996, (eds) B.
Grammaticos and K. Tamizhman