It is shown that a class of important integrable nonlinear evolution
equations in (2+1) dimensions can be associated with the motion of space curves
endowed with an extra spatial variable or equivalently, moving surfaces.
Geometrical invariants then define topological conserved quantities. Underlying
evolution equations are shown to be associated with a triad of linear
equations. Our examples include Ishimori equation and Myrzakulov equations
which are shown to be geometrically equivalent to Davey-Stewartson and Zakharov
-Strachan (2+1) dimensional nonlinear Schr\"odinger equations respectively.Comment: 13 pages, RevTeX, to appear in J. Math. Phy