We suggest a method for integrating sub-families of a family of nonlinear
{\sc Schr\"odinger} equations proposed by {\sc H.-D.~Doebner} and {\sc
G.A.~Goldin} in the 1+1 dimensional case which have exceptional {\sc Lie}
symmetries. Since the method of integration involves non-local transformations
of dependent and independent variables, general solutions obtained include
implicitly determined functions. By properly specifying one of the arbitrary
functions contained in these solutions, we obtain broad classes of explicit
square integrable solutions. The physical significance and some analytical
properties of the solutions obtained are briefly discussed.Comment: 23 pages, revtex, 1 figure, uses epsfig.sty and amssymb.st