research

Continuous vacua in bilinear soliton equations

Abstract

We discuss the freedom in the background field (vacuum) on top of which the solitons are built. If the Hirota bilinear form of a soliton equation is given by A(D_{\vec x})\bd GF=0,\, B(D_{\vec x})(\bd FF - \bd GG)=0 where both AA and BB are even polynomials in their variables, then there can be a continuum of vacua, parametrized by a vacuum angle ϕ\phi. The ramifications of this freedom on the construction of one- and two-soliton solutions are discussed. We find, e.g., that once the angle ϕ\phi is fixed and we choose u=arctanG/Fu=\arctan G/F as the physical quantity, then there are four different solitons (or kinks) connecting the vacuum angles ±ϕ\pm\phi, ±ϕ±Π2\pm\phi\pm\Pi2 (defined modulo π\pi). The most interesting result is the existence of a ``ghost'' soliton; it goes over to the vacuum in isolation, but interacts with ``normal'' solitons by giving them a finite phase shift.Comment: 9 pages in Latex + 3 figures (not included

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019