research

Multilinear Operators: The Natural Extension Of Hirota's Bilinear Formalism

Abstract

We introduce multilinear operators, that generalize Hirota's bilinear DD operator, based on the principle of gauge invariance of the τ\tau functions. We show that these operators can be constructed systematically using the bilinear DD's as building blocks. We concentrate in particular on the trilinear case and study the possible integrability of equations with one dependent variable. The 5th order equation of the Lax-hierarchy as well as Satsuma's lowest-order gauge invariant equation are shown to have simple trilinear expressions. The formalism can be extended to an arbitrary degree of multilinearity.Comment: 9 pages in plain Te

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020