We present a quantum key distribution experiment in which keys that were
secure against all individual eavesdropping attacks allowed by quantum
mechanics were distributed over 100 km of optical fiber. We implemented the
differential phase shift quantum key distribution protocol and used low timing
jitter 1.55 um single-photon detectors based on frequency up-conversion in
periodically poled lithium niobate waveguides and silicon avalanche
photodiodes. Based on the security analysis of the protocol against general
individual attacks, we generated secure keys at a practical rate of 166 bit/s
over 100 km of fiber. The use of the low jitter detectors also increased the
sifted key generation rate to 2 Mbit/s over 10 km of fiber.Comment: 10 pages, 5 figure