Decoy states have recently been proposed as a useful method for substantially
improving the performance of quantum key distribution protocols when a coherent
state source is used. Previously, data post-processing schemes based on one-way
classical communications were considered for use with decoy states. In this
paper, we develop two data post-processing schemes for the decoy-state method
using two-way classical communications. Our numerical simulation (using
parameters from a specific QKD experiment as an example) results show that our
scheme is able to extend the maximal secure distance from 142km (using only
one-way classical communications with decoy states) to 181km. The second scheme
is able to achieve a 10% greater key generation rate in the whole regime of
distances