The analytic continuation of the Lippmann-Schwinger bras and kets is obtained
and characterized. It is shown that the natural mathematical setting for the
analytic continuation of the solutions of the Lippmann-Schwinger equation is
the rigged Hilbert space rather than just the Hilbert space. It is also argued
that this analytic continuation entails the imposition of a time asymmetric
boundary condition upon the group time evolution, resulting into a semigroup
time evolution. Physically, the semigroup time evolution is simply a (retarded
or advanced) propagator.Comment: 32 pages, 3 figure