We describe experiments on trapping of atoms in microscopic magneto-optical
traps on an optically transparent permanent-magnet atom chip. The chip is made
of magnetically hard ferrite-garnet material deposited on a dielectric
substrate. The confining magnetic fields are produced by miniature magnetized
patterns recorded in the film by magneto-optical techniques. We trap Rb atoms
on these structures by applying three crossed pairs of counter-propagating
laser beams in the conventional magneto-optical trapping (MOT) geometry. We
demonstrate the flexibility of the concept in creation and in-situ modification
of the trapping geometries through several experiments.Comment: Modifications: A) Reference I. Barb et al., Eur. Phys. JD, 35, 75
(2005) added. B)Sentence rewritten: We routinely capture more than 10^6 atoms
in a micro-MOT on a magnetized pattern. C) The magnetic field strengths are
now given in Teslas. D) The second sentence in the fourth paragraph has been
rewritten in order to more clearly describe the geometry and purpose of the
compensation coils.E) In the seventh paragraph we have rewritten the sentence
about the creation of the external magnetic field for the magnetic-domain
patterning. F) In the ninth paragraph, we clarify the way to shift the trap
center. G) Caption of Fig. 4 changed. H) We have modified paragraph 12 to
improve the description on the guiding of the trap center along a toroidal
pattern. I) The last two sentences of the manuscript have been rewritte