research

Multimode theory of measurement-induced non-Gaussian operation on wideband squeezed light

Abstract

We present a multimode theory of non-Gaussian operation induced by an imperfect on/off-type photon detector on a splitted beam from a wideband squeezed light. The events are defined for finite time duration TT in the time domain. The non-Gaussian output state is measured by the homodyne detector with finite bandwidh BB. Under this time- and band-limitation to the quantm states, we develop a formalism to evaluate the frequency mode matching between the on/off trigger channel and the conditional signal beam in the homodyne channel. Our formalism is applied to the CW and pulsed schemes. We explicitly calculate the Wigner function of the conditional non-Gaussian output state in a realistic situation. Good mode matching is achieved for BT\alt1, where the discreteness of modes becomes prominant, and only a few modes become dominant both in the on/off and the homodyne channels. If the trigger beam is projected nearly onto the single photon state in the most dominant mode in this regime, the most striking non-classical effect will be observed in the homodyne statistics. The increase of BTBT and the dark counts degrades the non-classical effect.Comment: 20 pages, 14 figures, submitted to Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019