We investigate the scaling of the entanglement entropy in an infinite
translational invariant Fermionic system of any spatial dimension. The states
under consideration are ground states and excitations of tight-binding
Hamiltonians with arbitrary interactions. We show that the entropy of a finite
region typically scales with the area of the surface times a logarithmic
correction. Thus, in contrast to analogous Bosonic systems, the entropic area
law is violated for Fermions. The relation between the entanglement entropy and
the structure of the Fermi surface is discussed, and it is proven, that the
presented scaling law holds whenever the Fermi surface is finite. This is in
particular true for all ground states of Hamiltonians with finite range
interactions.Comment: 5 pages, 1 figur