Properties of Cd1-xZnx Te crystals grown by High Pressure Bridgman (HPB)

Abstract

In this paper we present results of a modelling of the current-voltage characteristics of metal/ultra-thin oxide/semiconductor structures with negatively biased metal gate (V<0), when the oxide thickness varies from 45Å to 80Å. We analyze the theoretical influence of the temperature and Schottky effect on the Fowler-Nordheim (FN) conduction. The results obtained show that these influences depend on the electric field in the oxide and on the potential barrier at the metal/oxide interface. At the ambient temperature, the influence on this potential barrier is lower than 1.5%. However, it can reach 45% on the pre-exponential coefficient of the FN current. It is therefore necessary to consider in the FN classical conduction expression a correction term that takes account the temperature and Schottky effects. These results are validated experimentally by modelling the current-voltage characteristics of the realized structures at high field.In this paper we present results of a modelling of the current-voltage characteristics of metal/ultra-thin oxide/semiconductor structures with negatively biased metal gate (V<0), when the oxide thickness varies from 45Å to 80Å. We analyze the theoretical influence of the temperature and Schottky effect on the Fowler-Nordheim (FN) conduction. The results obtained show that these influences depend on the electric field in the oxide and on the potential barrier at the metal/oxide interface. At the ambient temperature, the influence on this potential barrier is lower than 1.5%. However, it can reach 45% on the pre-exponential coefficient of the FN current. It is therefore necessary to consider in the FN classical conduction expression a correction term that takes account the temperature and Schottky effects. These results are validated experimentally by modelling the current-voltage characteristics of the realized structures at high field

    Similar works