Measurement Of The Nonlinear Ultrasonic Parameter In Aqueous Solutions

Abstract

This paper deals with the measurement of the nonlinear ultrasound coefficient in aqueous solutions. Our aim is to show the possibility of using this parameter in ultrasound characterization of these solutions with the possibility of extending this technique to other complex media. The experimental determination of nonlinearity parameter is based on the quasi-linear approximation that allows us to derive an analytical expression of the second harmonic amplitude that takes into account the diffraction and the absorption effects. The experimental set up is composed of a piezoelectric disc transmitting at the fundamental frequency 2.2 MHz. The second harmonic is detected using a ring surrounding the disc and functioning at 4.4 MHz. The disc and the ring are both mounted on the same composed device and are both located in the same transversal plan to the propagation axis. The transmitted wave propagates through the sample and is detected by the receiver An appropriate signal processing permits the determination of the nonlinear parameter. The experimental results are promising and show a close correlation between the nonlinearity parameter, and the nature and the concentration of the compounds in the aqueous solutions studied.This paper deals with the measurement of the nonlinear ultrasound coefficient in aqueous solutions. Our aim is to show the possibility of using this parameter in ultrasound characterization of these solutions with the possibility of extending this technique to other complex media. The experimental determination of nonlinearity parameter is based on the quasi-linear approximation that allows us to derive an analytical expression of the second harmonic amplitude that takes into account the diffraction and the absorption effects. The experimental set up is composed of a piezoelectric disc transmitting at the fundamental frequency 2.2 MHz. The second harmonic is detected using a ring surrounding the disc and functioning at 4.4 MHz. The disc and the ring are both mounted on the same composed device and are both located in the same transversal plan to the propagation axis. The transmitted wave propagates through the sample and is detected by the receiver An appropriate signal processing permits the determination of the nonlinear parameter. The experimental results are promising and show a close correlation between the nonlinearity parameter, and the nature and the concentration of the compounds in the aqueous solutions studied

    Similar works