The general normal ordering problem for boson strings is a combinatorial
problem. In this note we restrict ourselves to single-mode boson monomials.
This problem leads to elegant generalisations of well-known combinatorial
numbers, such as Bell and Stirling numbers. We explicitly give the generating
functions for some classes of these numbers. Finally we show that a graphical
representation of these combinatorial numbers leads to sets of model field
theories, for which the graphs may be interpreted as Feynman diagrams
corresponding to the bosons of the theory. The generating functions are the
generators of the classes of Feynman diagrams.Comment: 9 pages, 4 figures. 12 references. Presented at the Symposium
'Symmetries in Science XIII', Bregenz, Austria, 200