research

Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory

Abstract

Bohmian mechnaics is the most naively obvious embedding imaginable of Schr\"odingers's equation into a completely coherent physical theory. It describes a world in which particles move in a highly non-Newtonian sort of way, one which may at first appear to have little to do with the spectrum of predictions of quantum mechanics. It turns out, however, that as a consequence of the defining dynamical equations of Bohmian mechanics, when a system has wave function ψ\psi its configuration is typically random, with probability density ρ\rho given by ψ2|\psi|^2, the quantum equilibrium distribution. It also turns out that the entire quantum formalism, operators as observables and all the rest, naturally emerges in Bohmian mechanics from the analysis of ``measurements.'' This analysis reveals the status of operators as observables in the description of quantum phenomena, and facilitates a clear view of the range of applicability of the usual quantum mechanical formulas.Comment: 77 page

    Similar works